Skip to main content

Advertisement

Log in

Contrasting Fos expression induced by acute reboxetine and fluoxetine in the rat forebrain: neuroanatomical substrates for the antidepressant effect

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Antidepressants preferentially facilitating serotonin seem to be particularly effective for treating the anxiety and aggressive component of the depressive syndrome, whereas those with a noradrenergic profile seem to be more effective in reducing psychomotor retardation, although their overall antidepressant effects are about the same. However, the mechanism of this difference remains unknown.

Objectives

To investigate the neural substrate for the different therapeutic efficacies of fluoxetine and reboxetine, we examined the regional Fos immunoreactivity (Fos-ir) induced by the two agents.

Methods

Male Wistar rats (290–330 g) were given a subcutaneous injection of fluoxetine (5 or 10 mg/kg), reboxetine (5 or 10 mg/kg) or saline. Two hours later, rats were perfused through the ascending aorta and their brains were processed for Fos immunohistochemistry. Fos-ir was quantified by counting the number of Fos-ir-positive nuclei in six areas of the forebrain.

Results

The shell of the nucleus accumbens was the only region in which both fluoxetine and reboxetine equally increased Fos-ir expression. Fluoxetine particularly induced Fos-ir in the central nucleus of the amygdala. In contrast, reboxetine induced Fos-ir in the cingulate cortex area 3 and the lateral orbital cortex.

Conclusions

These results suggest that the shell region may be one possible target for the antidepressant effects of fluoxetine and reboxetine. Furthermore, the difference in their clinical effects may depend on their different target sites of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alheid GF, Heimer L (1996) Theories of basal forebrain organization and the “emotional motor system”. Prog Brain Res 107:461–484

    CAS  PubMed  Google Scholar 

  • Beck CH (1995) Acute treatment with antidepressant drugs selectively increases the expression of c-fos in the rat brain. J Psychiatr Neurosci 20:25–32

    CAS  Google Scholar 

  • Belzung C, Le Guisquet AM, Barreau S, Calatayud F (2001) An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice. Behav Pharmacol 12:151–162

    CAS  PubMed  Google Scholar 

  • Berridge CW, Stratford TL, Foote SL, Kelley AE (1997) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241

    Article  CAS  PubMed  Google Scholar 

  • Biederman J, Spencer T (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 46:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS (2002) Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51:273–279

    Article  PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  CAS  PubMed  Google Scholar 

  • Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 55:1067–1070

    CAS  PubMed  Google Scholar 

  • Catalano G, Hakala SM, Catalano MC (2000) Sertraline-induced panic attacks. Clin Neuropharmacol 23:164–168

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Page ME, Lucki I (2002) Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol 436:197–205

    Article  CAS  PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829

    Article  CAS  PubMed  Google Scholar 

  • Dubini A, Bosc M, Polin V (1997) Do noradrenaline and serotonin differentially affect social motivation and behaviour? Eur Neuropsychopharmacol 7:S49–S55; discussion S71–S73

    Google Scholar 

  • Eriksson E (2000) Antidepressant drugs: does it matter if they inhibit the reuptake of noradrenaline or serotonin? Acta Psychiatr Scand Suppl 402:12–17

    CAS  PubMed  Google Scholar 

  • Eriksson E, Hedberg MA, Andersch B, Sundblad C (1995) The serotonin reuptake inhibitor paroxetine is superior to the noradrenaline reuptake inhibitor maprotiline in the treatment of premenstrual syndrome. Neuropsychopharmacology 12:167–176

    Google Scholar 

  • Faw B (2003) Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: a tutorial review. Conscious Cognit 12:83–139

    Article  Google Scholar 

  • Ferguson JM, Wesnes KA, Schwartz GE (2003) Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients. Int Clin Psychopharmacol 18:9–14

    Article  PubMed  Google Scholar 

  • George MS, Ketter TA, Post RM (1993) SPECT and PET imaging in mood disorders. J Clin Psychiatry 54:6–13

    PubMed  Google Scholar 

  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM (1995) Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem 65:111–116

    CAS  PubMed  Google Scholar 

  • Hamamura T, Lee Y, Ohashi K, Fujiwara Y, Miki M, Suzuki H, Kuroda S (2000) A low dose of lithium chloride selectively induces Fos protein in the central nucleus of the amygdala of rat brain. Prog Neuropsychopharmacol Biol Psychiatry 24:285–294

    Article  CAS  PubMed  Google Scholar 

  • Jongsma ME, Sebens JB, Bosker FJ, Korf J (2002) Effect of 5-HT1A receptor-mediated serotonin augmentation on Fos immunoreactivity in rat brain. Eur J Pharmacol 455:109–115

    Article  CAS  PubMed  Google Scholar 

  • Kasper S (1999) From symptoms to social functioning: differential effects of antidepressant therapy. Int Clin Psychopharmacol 14:S27–S31

    Google Scholar 

  • Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547

    Article  CAS  PubMed  Google Scholar 

  • Massana J, Moller HJ, Burrows GD, Montenegro RM (1999) Reboxetine: a double-blind comparison with fluoxetine in major depressive disorder. Int Clin Psychopharmacol 14:73–80

    CAS  PubMed  Google Scholar 

  • Modigh K, Westberg P, Eriksson E (1992) Superiority of clomipramine over imipramine in the treatment of panic disorder: a placebo-controlled trial. J Clin Psychopharmacol 12:251–261

    CAS  PubMed  Google Scholar 

  • Moorman JM, Leslie RA (1996) P-Chloroamphetamine induces c-fos in rat brain: a study of serotonin2A/2C receptor function. Neuroscience 72:129–139

    Google Scholar 

  • Moorman JM, Jackson A, Grahame-Smith DG, Leslie RA (1995) Induction of c-fos in rat forebrain by pharmacological manipulation of 5-hydroxytryptamine levels. Neuroscience 68:1089–1096

    Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Sydney

    Google Scholar 

  • Pelosi L, Slade T, Blumhardt LD, Sharma VK (2000) Working memory dysfunction in major depression: an event-related potential study. Clin Neurophysiol 111:1531–1543

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10:284–294

    Article  CAS  PubMed  Google Scholar 

  • Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep, and cat. Res Publ-Assoc Nerv Ment Dis 27:210–232

    Google Scholar 

  • Rouillard C, Bovetto S, Gervais J, Richard D (1996) Fenfluramine-induced activation of the immediate-early gene c-fos in the striatum: possible interaction between serotonin and dopamine. Brain Res Mol Brain Res 37:105–115

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240:1328–1331

    CAS  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    Article  CAS  PubMed  Google Scholar 

  • Salchner P, Singewald N (2002) Neuroanatomical substrates involved in the anxiogenic-like effect of acute fluoxetine treatment. Neuropharmacology 43:1238–1248

    Google Scholar 

  • Sasson Y, Iancu I, Fux M, Taub M, Dannon PN, Zohar J (1999) A double-blind crossover comparison of clomipramine and desipramine in the treatment of panic disorder. Eur Neuropsychopharmacol 9:191–196

    Google Scholar 

  • Schoenbaum G, Setlow B (2001) Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learn Mem 8:134–147

    Article  CAS  PubMed  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase–DAB–nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    Article  CAS  PubMed  Google Scholar 

  • Singewald N, Salchner P, Sharp T (2003) Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 53 275–283

    Article  CAS  PubMed  Google Scholar 

  • Stephenson CP, Hunt GE, Topple AN, McGregor IS (1999) The distribution of 3,4-methylenedioxymethamphetamine “ecstasy”-induced c-fos expression in rat brain. Neuroscience 92:1011–1023

    Google Scholar 

  • Stone EA, Zhang Y, John SM, Bing G (1991) c-Fos response to administration of catecholamines into brain by microdialysis. Neurosci Lett 133:33–35

    Article  CAS  PubMed  Google Scholar 

  • Sumner BE, Cruise LA, Slattery DA, Hill DR, Shahid M, Henry B (2004) Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology 171:306–321

    Article  CAS  PubMed  Google Scholar 

  • Thoren P, Asberg M, Cronholm B, Jornestedt L, Traskman L (1980) Clomipramine treatment of obsessive-compulsive disorder: I. A controlled clinical trial. Arch Gen Psychiatry 37:1281–1285

    CAS  PubMed  Google Scholar 

  • Williams RA, Hagerty BM, Cimprich B, Therrien B, Bay E, Oe H (2000) Changes in directed attention and short-term memory in depression. J Psychiatr Res 34:227–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Zikei Institute of Psychiatry (Okayama, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hamamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, S., Hamamura, T., Lee, Y. et al. Contrasting Fos expression induced by acute reboxetine and fluoxetine in the rat forebrain: neuroanatomical substrates for the antidepressant effect. Psychopharmacology 177, 289–295 (2005). https://doi.org/10.1007/s00213-004-2072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2072-7

Keywords

Navigation