Skip to main content
Log in

Fluvoxamine, a selective serotonin reuptake inhibitor, suppresses tetrahydrobiopterin levels and dopamine as well as serotonin turnover in the mesoprefrontal system of mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Tetrahydrobiopterin (BH4) is a coenzyme of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), rate-limiting enzymes of monoamine biosynthesis. According to the monoamine hypothesis of depression, antidepressants will restore the function of the brain monoaminergic system, and BH4 concentration.

Objective

To investigate the effects of fluvoxamine on BH4 levels and dopamine (DA) and serotonin (5-HT) turnover in the mesoprefrontal system, incorporating two risk factors of depression, social isolation and acute environmental change.

Methods

Male ddY mice (6W) were divided into two housing groups, i.e. group-housing (eight animals per cage; 35 days), and isolation-housing (one per cage; 35 days), SC injected with fluvoxamine (20 or 40 mg/kg; days 29–35), and exposed to 20-min novelty stress (day 35). The levels of BH4, DA, homovanilic acid (HVA), 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the prefrontal cortex and midbrain.

Results

Under the group-housing condition, novelty stress significantly increased BH4 levels in both regions, and the HVA/DA ratio in the midbrain, whereas it did not change any parameters in either region under the isolation-housing condition. In the prefrontal cortex, fluvoxamine significantly decreased the 5-HIAA/5-HT ratio under the group-housing condition, and BH4 levels and the HVA/DA ratio under the isolation-housing condition. In the midbrain, fluvoxamine significantly decreased all parameters, except for an increasing in the 5-HIAA/5-HT ratio under the isolation-housing condition.

Conclusion

Isolation-housing suppressed the increase of BH4 levels and DA turnover elicited by novelty stress. Fluvoxamine suppressed BH4 levels, and DA and 5-HT turnover. Fluvoxamine may have altered DA turnover by suppressing BH4 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barañano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  PubMed  Google Scholar 

  • Boadle-Biber MC, Corley KC, Graves L, Phan TH, Rosecrans J (1989) Increase in the activity of tryptophan hydroxylase from cortex and midbrain of male Fischer 344 rats in response to acute or repeated sound stress. Brain Res 482:306–316

    Article  CAS  PubMed  Google Scholar 

  • Chamas F, Serova L, Sabban EL (1999) Tryptophan hydroxylase mRNA levels are elevated by repeated immobilization stress in rat raphe nuclei but not in pineal gland. Neurosci Lett 267:157–160

    Article  CAS  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) Dopamine (The biochemical basis of neuropharmacology, 8th edition). Oxford University Press, New York

  • Crepsi F, Wright IK, Möbius C (1992) Isolation rearing of rats alters release of 5-hydroxytryptamine and dopamine in the frontal cortex: an in vivo electrochemical study. Exp Brain Res 88:495–501

    PubMed  Google Scholar 

  • Da Silva GD, Matteussi AS, dos Santos AR, Calixto JB, Rodrigues AL (2000) Evidence for dual effects of nitric oxide in the forced swimming test and in the tail suspension test in mice. Neuroreport 11:3699–3702

    PubMed  Google Scholar 

  • Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

    CAS  Google Scholar 

  • Di Mascio M, Di Giovanni G, Di Matteo V, Prisco S, Esposito E (1998) Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull 46:547–554

    Article  PubMed  Google Scholar 

  • Dong J, De Montigny C, Blier P (1999) Assessment of the serotonin reuptake blocking property of YM992: electrophysiological studies in the rat hippocampus and dorsal raphe. Synapse 34:277–289

    Article  CAS  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signaling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    CAS  PubMed  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658

    CAS  PubMed  Google Scholar 

  • Flatmark T (2000) Catecholamine biosynthesis and physiological regulation in neuroendcrine cells. Acta Physiol Scand 168:1–17

    Article  CAS  PubMed  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6

    CAS  Google Scholar 

  • Holson RR, Scallet AC, Ali SF, Turner BB (1991) “Isolation stress” revisited: isolation-rearing effects depend on animal care methods. Physiol Behav 49:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Jaffe EH (1998) Ca2+ dependency of serotonin and dopamine release from CNS slices of chronically isolated rats. Psychopharmacology 139:255–260

    Article  CAS  PubMed  Google Scholar 

  • Jones GH, Hernandez TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35

    Article  CAS  PubMed  Google Scholar 

  • Karolewicz B, Bruce KH, Lee B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 2. Chronic treatment results in downregulation of cortical beta-adrenoceptors. Eur J Pharmacol 372:215–220

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Kessler RC, Neale MC, Heath AC, Eaves LJ (1993) The prediction of major depression in women: toward an integrated etiologic model. Am J Psychiatry 150:1139–1148

    CAS  PubMed  Google Scholar 

  • Kishimoto J, Tsuchiya T, Emson PC, Nakayama Y (1996) Immobilization-induced stress activates neuronal nitric oxide synthase (nNOS) mRNA and protein in hypothalamic-pituitary-adrenal axis in rats. Brain Res 720:159–171

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215

    Article  CAS  PubMed  Google Scholar 

  • Krebs-Thomson K, Giracello D, Solis A, Geyer MA (2001) Post-weaning handling attenuates isolation-rearing induced disruptions of prepulse inhibition in rats. Behav Brain Res 120:221–224

    Article  CAS  PubMed  Google Scholar 

  • Kupfermann I, Schwartz J (1995) Motivation. In: Kandel ER, Schwartz JH, Jessell TM (eds) Essentials of neural science and behavior, McGraw-Hill, New York, pp 613–628

  • Lapierre YD, Rastogi RB, Singhal RL (1983) Fluvoxamine influences serotonergic system in the brain: neurochemical evidence. Neuropsychobiology 10:213–216

    CAS  PubMed  Google Scholar 

  • Leonard BE (2000) Evidence for a biochemical lesion in depression. J Clin Psychiatry 61(Suppl 6):12–17

    CAS  Google Scholar 

  • Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L, Sanacora G, Owens MJ, Nemeroff CB, Rajeevan N, Baldwin RM, Seibyl JP, Innis RB, Charney DS (1998) Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Miachon S, Rochet T, Mathian B, Barbagli B, Claustrat B (1993) Long-term isolation of wistar rats alters brain monoamine turnover, blood corticosterone, and ACTH. Brain Res Bull 32:611–614

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Qiao H, Ohta T (2002a) Attenuating effects of the isolated rearing condition on increased brain serotonin and dopamine turnover elicited by novelty stress. Brain Res 926:10–17

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Qiao H, Ohta T (2002b) Influence of aging and social isolation on changes in brain monoamine turnover and biosynthesis of rats elicited by novelty stress. Synapse 46:116–124

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Qiao H, Kitagami T, Ohta T (2004) Fluvoxamine, a selective serotonin reuptake inhibitor, suppresses tetrahydrobiopterin in the mouse hippocampus. Neuropharmacology 46:340–348

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Ichinose H (1999) Regulation of pteridine-requiring enzymes by the cofactor tetrahydrobiopterin. Mol Neurobiol 19:79–96

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 87:7522–7526

    CAS  PubMed  Google Scholar 

  • Ohkuma S, Katsura M (2001) Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64:97–108

    Article  CAS  PubMed  Google Scholar 

  • Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    CAS  PubMed  Google Scholar 

  • Paykel ES (1994) Life events, social support and depression. Acta Psychiatr Scand Suppl 377:50–58

    CAS  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  • Richelson E (1997) Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc 72:835–847

    CAS  PubMed  Google Scholar 

  • Serova L, Sabban EL, Zangen A, Overstreet DH, Yadid G (1998) Altered gene expression for catecholamine biosynthetic enzymes and stress response in rat genetic model of depression. Brain Res Mol Brain Res 63:133–138

    Article  CAS  PubMed  Google Scholar 

  • Smith KA, Fairburn CG, Cowen PJ (1997) Relapse of depression after rapid depletion of tryptophan. Lancet 349:915–919

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Urano F, Kuroda R, Ohye T, Kojima M, Tazawa M, Shiraishi H, Hagino Y, Nagatsu T, Nomura T, Ichinose H (2001) Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 276:41150–41160

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Ohno T (1993) Analysis of 6R- and 6S-tetrahydrobiopterin and other pterins by reversed-phase ion-pair liquid chromatography with fluorimetric detection by post-column sodium nitrite oxidation. J Chromatogr 617:249–255

    Article  CAS  PubMed  Google Scholar 

  • Yanai J, Sze PY (1983) Isolation reduces midbrain tryptophan hydroxylase activity in mice. Psychopharmacology 80:284–285

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, H., Qiao, H., Kitagami, T. et al. Fluvoxamine, a selective serotonin reuptake inhibitor, suppresses tetrahydrobiopterin levels and dopamine as well as serotonin turnover in the mesoprefrontal system of mice. Psychopharmacology 177, 307–314 (2005). https://doi.org/10.1007/s00213-004-1959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1959-7

Keywords

Navigation