Skip to main content

Advertisement

Log in

Antagonism of nitrous oxide-induced anxiolytic-like behavior in the mouse light/dark exploration procedure by pharmacologic disruption of endogenous nitric oxide function

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previous studies have shown the anxiolytic-like effects of nitrous oxide (N2O) to be sensitive to antagonism by non-specific inhibitors of nitric oxide synthase (NOS).

Objectives

The present study was conducted to demonstrate further the involvement of nitric oxide (NO) and ascertain whether a specific isoform of NOS is involved in N2O-induced behavior in mice.

Methods

Male NIH Swiss mice were tested in the light/dark exploration test to determine how N2O-induced behavior was affected by the following pretreatments: the NO scavenger hemoglobin (Hb); the selective nNOS-inhibitor S-methyl-l-thiocitrulline (SMTC); the selective eNOS-inhibitor N(5)-(1-iminoethyl)-l-ornithine (l-NIO); and the selective iNOS-inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT). Furthermore, NOS activity was assessed in the whole brain as well as five brain areas of N2O- versus room air-exposed mice to determine the effects of N2O on NOS activity.

Results

The behavioral effects of N2O in the light/dark exploration test were significantly attenuated following pretreatment with Hb (2.0 nmol, i.c.v.), SMTC (0.3 µg and 1.0 µg per mouse, i.c.v.) and the higher dose of l-NIO (30 mg/kg, s.c.). However, the N2O-induced behavioral effect was unaltered by pretreatment with either the lower dose of l-NIO (10 mg/kg, s.c.) or AMT (1.0 mg/kg and 3.0 mg/kg, s.c.). Finally exposure to 50% N2O for 15 min significantly increased NOS activity in the cerebellum and corpus striatum but not in other brain regions or whole brain.

Conclusion

These findings provide further support for the hypothesis that NO is involved in N2O-induced anxiolytic-like behavior and that this NO is the product of nNOS enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75

    Article  CAS  PubMed  Google Scholar 

  • Branda EM, Ramza JT, Cahill FJ, Tseng LF, Quock RM (2000) Role of brain dynorphin in nitrous oxide antinociception in mice. Pharmacol Biochem Behav 65:217–221

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiological messenger molecule. Annu Rev Biochem 63:175–179

    CAS  PubMed  Google Scholar 

  • Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RG (1993) Nitric oxide: an endogenous anticonvulsant substance. Neuroreport 4:444–446

    CAS  PubMed  Google Scholar 

  • Canto de Souza A, Luiz Nunes de Souza R, Rodgers RJ (2002) Anxiolytic-like effect of WAY100635 microinfusions into the median (but not dorsal) raphe nucleus in mice exposed to the plus-maze: influence of prior test experience. Brain Res 928:50–59

    Article  PubMed  Google Scholar 

  • Caton PW, Tousman SA, Quock RM (1994) Involvement of nitric oxide anxiolysis in the elevated plus-maze. Pharmacol Biochem Behav 48:689–692

    CAS  PubMed  Google Scholar 

  • Crawley JN, Goodwin FK (1980) Preliminary report of a simple animal behaviour for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    CAS  Google Scholar 

  • Czech DA, Green DA (1992) Anxiolytic effects of nitrous oxide in mice in the light-dark and holeboard exploratory tests. Psychopharmacology 109:315–320

    CAS  PubMed  Google Scholar 

  • Czech DA, Quock RM (1993) Nitrous oxide induces an anxiolytic-like effect in the conditioned defensive burying paradigm, which can be reversed with a benzodiazepine receptor blocker. Psychopharmacology 113:211–216

    Google Scholar 

  • De Sarro G, Di Paola ED, De Sarro A, Vidal MJ (1993) l-arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex. Eur J Pharmacol 230:151–158

    PubMed  Google Scholar 

  • Dunn RW, Reed TA, Copeland PD, Frye CA (1998) The nitric oxide synthase inhibitor 7-nitroindazole displays enhanced anxiolytic efficacy without tolerance in rats following subchronic administration. Neuropharmacology 37:899–904

    Article  CAS  PubMed  Google Scholar 

  • Emmanouil DE, Johnson CH, Quock RM (1994) Nitrous oxide anxiolytic effect in mice in the elevated plus maze: mediation by benzodiazepine receptor. Psychopharmacology 115:167–172

    Google Scholar 

  • Ferguson SA, Paule MG, Holson RR (2001) Neonatal dexamethasone on Day 7 in rats causes behavioral alterations reflective of hippocampal, but not cerebellar, deficits. Neurotoxicol Teratol 23:57–69

    Article  CAS  PubMed  Google Scholar 

  • Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, Duffy C, Hazelwood R, Oplinger JA, Garvey EP (1994) Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-l-thiocitrulline and S-ethyl-l-thiocitrulline. J Biol Chem 269:26677–26683

    CAS  PubMed  Google Scholar 

  • Gross SS, Lane P (1999) Physiological reactions of nitric oxide and hemoglobin: a radical rethink. Proc Natl Acad Sci USA 96:9967–9969

    Article  CAS  PubMed  Google Scholar 

  • Guimarães FS, De Aguiar JC, Del-Bel EA, Ballejo G (1994) Anxiolytic effect of NO synthase inhibitors microinjected into the dorsal central grey. Neuroreport 5:1929–1932

    PubMed  Google Scholar 

  • Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injections of drugs in the conscious mouse. Br J Pharmacol Chemother 12:12–15

    CAS  Google Scholar 

  • Hall CW, Behbehani MM (1998) Synaptic effects of nitric oxide, enkephalinergic, GABAergic and glutaminergic networks of the rat periaqueductal gray. Brain Res 805:69–87

    CAS  PubMed  Google Scholar 

  • Hara S, Gagnon MJ, Quock RM, Shibuya T (1994) Effect of opioid peptide antisera on nitrous oxide antinociception in rats. Pharmacol Biochem Behav 48:699–702

    Article  CAS  PubMed  Google Scholar 

  • Hascoët M, Bourin M, Nic Dhonnchadha BA (2001) The mouse light-dark paradigm: a review. Prog Neuropsychopharmacol Biol Psychiatry 25:141–166

    CAS  PubMed  Google Scholar 

  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    CAS  PubMed  Google Scholar 

  • Ishikawa M, Nicholls-Grzemski FA, Li S, Neff HD, Day E, Quock RM (2001) Influence of isoform-selective inhibitors of nitric oxide synthase on nitrous oxide antinoceception in mice (abstract). Pharmacology Meeting, Vancouver, Canada

  • Khoshbouei H, Cecchia M, Dovea S, Javors M, Morilak DA (2002) Behavioral reactivity to stress: amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala. Pharmacol Biochem Behav 71:407–417

    Article  CAS  PubMed  Google Scholar 

  • Laszlo F, Whittle BJR (1997) Actions of isoform-selective and non-selective nitric oxide synthase inhibitors on endotoxin-induced vascular leakage in rat colon. Eur J Pharmacol 334:99–102

    Article  CAS  PubMed  Google Scholar 

  • Li S, Quock RM (2001) Comparison of chlordiazepoxide and N2O-induced behaviors in the light/dark exploration test. Pharmacol Biochem Behav 68:789–796

    Article  CAS  PubMed  Google Scholar 

  • Li S, Quock RM (2002) Effects of a nitric oxide donor on behavioral and interaction with nitrous oxide in the mouse light/dark exploration test. Eur J Pharmacol 447:75–78

    Article  CAS  PubMed  Google Scholar 

  • Lin HC, Kang BH, Wan FJ, Huang ST, Tseng CJ (2000) Reciprocal regulation of nitric oxide and glutamate in the nucleus tractus sollitarii of rats. Eur J Pharmacol 407:83–89

    Article  CAS  PubMed  Google Scholar 

  • Lino de Oliveira C, Del Bel EA, Guimarães FS (1997) Effects of L-NOARG on plus-maze performance in rats. Pharmacol Biochem Behav 56:55–59

    PubMed  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    CAS  PubMed  Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232:708–716

    CAS  PubMed  Google Scholar 

  • McCall TB, Feelisch M, Palmer RM, Moncada S (1991) Identification of N-iminoethyl-l-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol 102:234–238

    CAS  PubMed  Google Scholar 

  • McDonald CE, Gagnon MJ, Ellenberger EA, Hodges BL, Ream JK, Tousman SA, Quock RM (1994) Inhibitors of nitric oxide synthesis antagonize nitrous oxide antinociception in mice and rats. J Pharmacol Exp Ther 269:601–608

    CAS  PubMed  Google Scholar 

  • McDuffie JE, Coaxum SD, Maleque MA (1999) 5-hydroxytryptamine evokes endothelial nitric oxide synthase activation in bovine aortic endothelial cell cultures. Proc Soc Exp Biol Med 221:386–390

    Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide and nociceptive processing in the spinal cord. Pain 52:127–136

    CAS  PubMed  Google Scholar 

  • Moller C, Sommer W, Thorsell A, Heilig M (1999) Anxiogenic-like action of galanin after intra-amygdala administration in the rat. Neuropsychopharmacology 21:507–512

    Article  CAS  PubMed  Google Scholar 

  • Monzon ME, Varas MM, De Barioglio SR (2001) Anxiogenesis induced by nitric oxide synthase inhibition and anxiolytic effect of melanin-concentrating hormone (MCH) in rat brain. Peptides 22:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Moore PK, Oluyomi AO, Babbedge RC, Wallace P, Hart SL (1991) l-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 102:198–202

    CAS  PubMed  Google Scholar 

  • Motterlini R, Vandegriff KD, Winslow RM (1996) Hemoglobin-nitric oxide interaction and its implications. Transfus Med Rev 10:77–84

    CAS  PubMed  Google Scholar 

  • Nakane M, Klinghofer V, Kuk JE, Donnelly JL, Budzik GP, Pollock JS, Basha F, Carter GW (1995) Novel potent and selective inhibitors of inducible nitric oxide synthase. Mol Pharmacol 47:831–834

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Nelson RJ, Kriegseld LJ, Dawson VL, Dawson TM (1997) Effects of nitric oxide on neuroendocrine function and behavior. Front Neuroendocrinol 18:463–491

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma S, Katsura M (2001) Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64:97–108

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 14:149–167

    CAS  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    PubMed  Google Scholar 

  • Quock RM, Nguyen E (1992) Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci 51:255–260

    Article  Google Scholar 

  • Quock RM, Emmanouil DE, Vaughn LK, Pruhs RJ (1992) Benzodiazepine receptor mediation of behavioral effects of nitrous oxide in mice. Psychopharmacology 107:310–314

    Google Scholar 

  • Quock RM, Wetzel PJ, Maillefer RH, Hodges BL, Curtis BA, Czech DA (1993) Benzodiazepine receptor-mediated behavioral effects of nitrous oxide in the rat social interaction test. Pharmacol Biochem Behav 46:161–165

    Article  CAS  PubMed  Google Scholar 

  • Ramsay DS, Omachi K, Leroux BG, Seeley RJ, Prall CW, Woods SC (1999) Nitrous oxide-induced hypothermia in the rat: acute and chronic tolerance. Pharmacol Biochem Behav. 62:189–196

    Google Scholar 

  • Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752

    CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    PubMed  Google Scholar 

  • Titheradge MA (1999) Nitric oxide in septic shock. Biochim Biophys Acta 1411:437–455

    Article  CAS  PubMed  Google Scholar 

  • Tracey WR, Nakane M, Basha F, Carter G (1995) In vivo pharmacological evaluation of two novel type II (inducible) nitric oxide synthase inhibitors. Can J Physiol Pharmacol 73:665–669

    CAS  PubMed  Google Scholar 

  • Vale AL, Green S, Montgomery AM, Shafi S (1998) The nitric oxide synthesis inhibitor L-NAME produces anxiogenic-like effects in the rat elevated plus-maze test, but not in the social iteraction test. J Psychopharmacol 12:268–272

    CAS  PubMed  Google Scholar 

  • Volke V, Soosaar A, Kõks S, Bourin M, Männistö PT, Vasar E (1997) 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Pychopharmacology 131:399–405

    Article  CAS  Google Scholar 

  • Yilmaz G, Gursoy-Ozdemir Y, Dogan AI, Gurdal H, Gedikoglu G, Dalkara T, Guc MO (2001) Spleen damage in endotoxaemic mice: the involvement of nitric oxide. J Physiol Pharmacol 52:729–744

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was support by NIH grant DA-10343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond M. Quock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Ohgami, Y., Dai, Y. et al. Antagonism of nitrous oxide-induced anxiolytic-like behavior in the mouse light/dark exploration procedure by pharmacologic disruption of endogenous nitric oxide function. Psychopharmacology 166, 366–372 (2003). https://doi.org/10.1007/s00213-002-1363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-002-1363-0

Keywords

Navigation