Skip to main content
Log in

The role of nitric oxide—cGMP pathway in selegiline antidepressant-like effect in the mice forced swim test

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Considering the pivotal role of nitric oxide (NO) pathway in depressive disorders, the aim of the present study was to investigate the antidepressant-like effect of selegiline in mice forced swimming test (FST), and possible involvement of NO-cyclic guanosine monophosphate (cGMP) pathway in this action.

Methods

After assessment of locomotor activity in open-field test, mice were forced to swim individually and the immobility time of the last 4 min was evaluated. All drugs were given intraperitoneally (ip).

Results

Selegiline (10 mg/kg) decreased the immobility time in the FST similar to fluoxetine (20 mg/kg). Pretreatment with l-arginine (NO precursor, 750 mg/kg) or sildenafil (a phosphodiesterase 5 inhibitor, 5 mg/kg) significantly reversed the selegiline anti-immobility effect. Sub-effective dose of selegiline (1 mg/kg) showed a synergistic antidepressant effect with NG-nitro-l-arginine methyl ester (L-NAME, inhibitor of NO synthase, 10 mg/kg) or 7-nitroindazole (specific neuronal NO synthase inhibitor, 30 mg/kg), but not with aminoguanidine (specific inducible NO synthase inhibitor, 50 mg/kg). Pretreatment of mice with methylene blue (an inhibitor of NO synthase and soluble guanylyl cyclase, 10 mg/kg) significantly produced a synergistic response with the sub-effective dose of selegiline. Neither of the drugs changed the locomotor activity. Also, hippocampal and prefrontal cortex (PFC) nitrite content was significantly lower in selegiline-injected mice compared to saline-administrated mice. Also, co-injection of 7-nitroindazole with selegiline produced a significant reduction in hippocampal or PFC nitrite contents.

Conclusions

It is concluded that selegiline possesses antidepressant-like effect in mice FST through inhibition of l-arginine-NO-cyclic guanosine monophosphate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blier P., De Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 1994;15:220–6.

    Article  CAS  PubMed  Google Scholar 

  2. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007;64:327–37.

    Article  CAS  PubMed  Google Scholar 

  3. D’Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 2000;405:365–73.

    Article  PubMed  Google Scholar 

  4. Klimke A, Larisch R, Janz A, Vosberg H, Müller-Gärtner H-W. Gaebel W: Dopamine D 2 receptor binding before and after treatment of major depression measured by [123 I] IBZM SPECT. Psychiatry Res: Neuroimaging 1999;90:91–101.

    Article  CAS  PubMed  Google Scholar 

  5. Davie CA. A review of Parkinson’s disease. Br Med Bull 2008;86:109–27.

    Article  CAS  PubMed  Google Scholar 

  6. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014;311:1670–83.

    Article  PubMed  CAS  Google Scholar 

  7. Cummings JL, Masterman DL. Depression in patients with Parkinson’s disease. Int J Geriatr Psychiatry 1999;14:711–8.

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez HH, Chen JJ. Monoamine oxidase-B inhibition in the treatment of parkinson’s disease. Pharmacotherapy 2007;27:174S–85S.

    Article  CAS  PubMed  Google Scholar 

  9. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 2004;363:1783–93.

    Article  CAS  PubMed  Google Scholar 

  10. Youdim MB, Bakhle Y. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006;147:287–96.

    Article  CAS  Google Scholar 

  11. Papakostas GI. Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 2006;16:391–402.

    Article  CAS  PubMed  Google Scholar 

  12. Birkmayer W, Riederer P, Ambrozi L, Youdim M. Implications of combined treatment with ‘madopar’ and l-deprenil in parkinson’s disease: a long-term study. Lancet 1977;309:439–43.

    Article  Google Scholar 

  13. Varga E, Tringer L. Clinical trial of a new type promptly acting psychoenergetic agent (phenyl-isopropyl-methylpropinyl-HCl, E-250). Acta Med Acad Sci Hung 1966;23:289–95.

    Google Scholar 

  14. Mann J, Gershon S. L-Deprenyl a selective monoamine oxidase type-B inhibitor in endogenous depression. Life Sci 1980;26:877–82.

    Article  CAS  PubMed  Google Scholar 

  15. Birkmayer W, Riederer P, Linauer W, Knoll J. l-deprenyl plus l-phenylalanine in the treatment of depression. J Neural Transm 1984;59:81–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mendlewicz J, Youdim M. l-Deprenil a selective monoamine oxidase type B inhibitor, in the treatment of depression: a double blind evaluation. Br J Psychiatry 1983;142:508–11.

    Article  CAS  PubMed  Google Scholar 

  17. Quitkin FM, Liebowitz MR, Stewart JW, McGrath PJ, Harrison W, Rabkin JG, et al. l-Deprenyl in atypical depressives. Arch Gen Psychiatry 1984;41:777–81.

    Article  CAS  PubMed  Google Scholar 

  18. Mayberg HS, Solomon DH. Depression in Parkinson’s disease: a biochemical and organic viewpoint. Adv Neurol 1995;65:49.

    CAS  PubMed  Google Scholar 

  19. Shimazu S, Minami A, Kusumoto H, Yoneda F. Antidepressant-like effects of selegiline in the forced swim test. Eur Neuropsychopharmacol 2005;15:563–71.

    Article  CAS  PubMed  Google Scholar 

  20. Surmeier DJ, Bargas J, Hemmings HC, Nairn AC, Greengard P. Modulation of calcium currents by a D 1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995;14:385–97.

    Article  CAS  PubMed  Google Scholar 

  21. Moncada S, Higgs E, Hodson H, Knowles R, Lopez-Jaramillo P, McCall T, et al. The l-Arginine: nitric oxide pathway. J Cardiovasc Pharmacol 1991;17:S1&hyhen.

    Article  CAS  Google Scholar 

  22. Schmidt H, Pollock J, Nakane M, Förstermann U, Murad F. Ca2+ calmodulin-regulated nitric oxide synthases. Cell Calcium 1992;13:427–34.

    Article  CAS  PubMed  Google Scholar 

  23. Evans CH, Stefanovic-Racic M, Lancaster J. Nitric oxide and its role in orthopaedic disease. Clin Orthop Relat Res 1995;312:275–94.

    Google Scholar 

  24. Moncada S, Palmer R, Higgs E. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  25. Khandelwal RL, Gupta D, Sulakhe PV. Decreased activity and impaired induction of nitric oxide synthase by lipopolysaccharides in streptozotocin-induced diabetic rats. Biochim Biophys Acta (BBA)-Gen Subj 2003;1620:259–66.

    Article  CAS  Google Scholar 

  26. Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol 2002;135:1079–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopper RA, Garthwaite J. Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 2006;26:11513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T. More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci 2009;29:9344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foroutan A, Haddadi NS, Ostadhadi S, Sistany N, Dehpour AR. Chloroquine-induced scratching is mediated by NO/cGMP pathway in mice. Pharmacol Biochem Behav 2015;134:79–84.

    Article  CAS  PubMed  Google Scholar 

  30. Ostadhadi S, Foroutan A, Momeny M, Norouzi-Javidan A, Azimi E, Kordjazy N, et al. Evidence for the involvement of nitric oxide in cholestasis-induced itch associated response in mice. Biomed Pharmacother 2016;84:1367–74.

    Article  CAS  PubMed  Google Scholar 

  31. Haddadi A-S, Foroutan A, Ostadhadi S, Azimi E, Rahimi N, Nateghpour M, et al. Peripheral NMDA receptor/NO system blockage inhibits itch responses induced by chloroquine in mice. Acta Derm Venereol 2017;97:571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hassanipour M, Shirzadian A, Boojar MM-A, Abkhoo A, Abkhoo A, Delazar S, et al. Possible involvement of nitrergic and opioidergic systems in the modulatory effect of acute chloroquine treatment on pentylenetetrazol induced convulsions in mice. Brain Res Bull 2016;121:124–30.

    Article  CAS  PubMed  Google Scholar 

  33. da Silva GdL, Matteussi AS, dos Santos ARS, Calixto JB, Rodrigues ALS. Evidence for dual effects of nitric oxide in the forced swimming test and in the tail suspension test in mice. Neuroreport 2000;11:3699–702.

    Article  PubMed  Google Scholar 

  34. Ostadhadi S, Kordjazy N, Haj-Mirzaian A, Ameli S, Akhlaghipour G, Dehpour A. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol 2016;389:393–402.

    Article  CAS  PubMed  Google Scholar 

  35. Haj-Mirzaian A, Kordjazy N, Amiri S, Haj-Mirzaian A, Amini-khoei H, Ostadhadi S, et al. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test. Eur J Pharmacol 2016;780:71–81.

    Article  CAS  PubMed  Google Scholar 

  36. Khan MI, Ostadhadi S, Zolfaghari S, Mehr SE, Hassanzadeh G, Dehpour A-R. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen inmouse force swimming test. Neurosci Lett 2016;612:52–61.

    Article  CAS  PubMed  Google Scholar 

  37. Ostadhadi S, Khan MI, Norouzi-Javidan A, Chamanara M, Jazaeri F, Zolfaghari S, et al. Involvement of NMDA receptors and l-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test. Brain Res Bull 2016;122:62–70.

    Article  CAS  PubMed  Google Scholar 

  38. Dhir A, Kulkarni S. Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 2007;568:177–85.

    Article  CAS  PubMed  Google Scholar 

  39. Ferigolo M, Barros HM, Marquardt AR, Tannhauser M. Comparison of behavioral effects of moclobemide and deprenyl during forced swimming. Pharmacol Biochem Behav 1998;60:431–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ostadhadi S, Ahangari M, Nikoui V, Norouzi-Javidan A, Zolfaghari S, Jazaeri F, et al. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test. Biomed Pharmacother 2016;82:713–21.

    Article  CAS  PubMed  Google Scholar 

  41. Nazari SK, Nikoui V, Ostadhadi S, Chegini ZH, Oryan S, Bakhtiarian A. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test. Pharmacol Rep 2016;68:1214–20.

    Article  CAS  PubMed  Google Scholar 

  42. Porsolt R, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229:327–36.

    CAS  PubMed  Google Scholar 

  43. Ostadhadi S, Haj-Mirzaian A, Nikoui V, Kordjazy N, Dehpour AR. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice. Clin Exp Pharmacol Physiol 2016;43:203–1212.

    Article  CAS  PubMed  Google Scholar 

  44. Haj-Mirzaian A, Ostadhadi S, Kordjazy N, Dehpour AR, Mehr SE. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur J Pharmacol 2014;735:26–31.

    Article  CAS  PubMed  Google Scholar 

  45. Ostadhadi S, Akbarian R, Norouzi-Javidan A, Nikoui V, Zolfaghari S, Chamanara M, et al. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects ofgabapentin in mice forced swimming test. Can J Physiol Pharmacol 2017;95:795–802.

    Article  CAS  PubMed  Google Scholar 

  46. Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, et al. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: the role of potassium channels. Eur J Pharmacol 2016;791:369–76.

    Article  CAS  PubMed  Google Scholar 

  47. Jesse CR, Bortolatto CF, Savegnago L, Rocha JB, Nogueira CW. Involvement of l-arginine?nitric oxide?cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1838–43.

    Article  CAS  PubMed  Google Scholar 

  48. Wang R, Xu Y, Wu H-L, Li Y-B, Li Y-H, Guo J-B, et al. The antidepressant effects of curcumin in the forced swimming test involve 5-HT 1 and 5-HT 2 receptors. Eur J Pharmacol 2008;578:43–50.

    Article  CAS  PubMed  Google Scholar 

  49. Ghasemi M, Sadeghipour H, Mosleh A, Sadeghipour HR, Mani AR, Dehpour AR. Nitric oxide involvement in the antidepressant-like effects of acute lithium administration in the mouse forced swimming test. Eur Neuropsychopharmacol 2008;18:323–32.

    Article  CAS  PubMed  Google Scholar 

  50. Zomkowski ADE, Engel D, Gabilan NH, Rodrigues ALS. Involvement of NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effects of escitalopram in the forced swimming test. Eur Neuropsychopharmacol 2010;20:793–801.

    Article  CAS  PubMed  Google Scholar 

  51. Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR. Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 2011;224:336–43.

    Article  CAS  PubMed  Google Scholar 

  52. Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Kordjazy M, Sharifzadeh M, et al. Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. Eur J Pharmacol 2015;762:411–8.

    Article  CAS  PubMed  Google Scholar 

  53. Granger DL, Taintor RR, Boockvar KS, Hibbs JB. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol 1996;268:142–51.

    Article  CAS  PubMed  Google Scholar 

  54. Menza MA, Robertson-Hoffman DE, Bonapace AS. Parkinson’s disease and anxiety: comorbidity with depression. Biol Psychiatry 1993;34:465–70.

    Article  CAS  PubMed  Google Scholar 

  55. Martínez-Martín P, Damián J. Parkinson disease: depression and anxiety in Parkinson disease. Nat Rev Neurol 2010;6:243–5.

    Article  PubMed  Google Scholar 

  56. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss ofdopamine and noradrenaline innervation in the limbicsystem. Brain 2005;128:1314–22.

    Article  PubMed  Google Scholar 

  57. Hirschfeld R. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 2000;61:4–6.

    Article  CAS  PubMed  Google Scholar 

  58. Rossetti ZL, Lai M, Hmaidan Y, Gessa GL. Depletion of mesolimbic dopamine during behavioral despair: partial reversal by chronic imipramine. Eur J Pharmacol 1993;242:313–5.

    Article  CAS  PubMed  Google Scholar 

  59. Joca SR, Skalisz LL, Beijamini V, Vital MAB, Andreatini R. The antidepressive-like effectofoxcarbazepine: possible role ofdopaminergicneurotransmission. Eur Neuropsychopharmacol 2000;10:223–8.

    Article  CAS  PubMed  Google Scholar 

  60. Maj J, Rogóz Z. Pharmacological effects of venlafaxine, a new antidepressant, given repeatedly, on the α1-adrenergic, dopamine and serotonin systems. J Neural Transm 1999;106:197–211.

    Article  CAS  PubMed  Google Scholar 

  61. Laux G, Volz H-P, Möller H-J. Newer and older monoamine oxidase inhibitors. CNS Drugs 1995;3:145–58.

    Article  CAS  Google Scholar 

  62. Kitaichi Y, Inoue T, Mitsui N, Nakagawa S, Kameyama R, Hayashishita Y, et al. selegiline remarkably improved stage 5 treatment-resistant major depressive disorder: a case report. Neuropsychiatr Dis Treat 2013;9:1591.

    Article  PubMed  PubMed Central  Google Scholar 

  63. DelBello MP, Hochadel TJ, Portland KB, Azzaro AJ, Katic A, Khan A, et al. A double-blind, placebo-controlled study of selegiline transdermal system in depressed adolescents. J Child Adolesc Psychopharmacol 2014;24:311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nikulina EM, Skrinskaya JA, Popova NK. Role of genotype and dopamine receptors in behaviour of inbred mice in a forced swimming test. Psychopharmacology (Berl) 1991;105:525–9.

    Article  CAS  Google Scholar 

  65. Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  66. Kisilevsky AE, Mulligan SJ, Altier C, Iftinca MC, Varela D, Tai C, et al. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron 2008;58:557–70.

    Article  CAS  PubMed  Google Scholar 

  67. Kisilevsky AE, Zamponi GW. D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels. Channels 2008;2:269–7.

    Article  PubMed  Google Scholar 

  68. Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 1995;64:936–9.

    Article  CAS  PubMed  Google Scholar 

  69. Maruyama W, Takahashi T, Naoi M. (−)-Deprenyl protects human dopaminergic neuroblastoma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 1998;70:2510–5.

    Article  CAS  PubMed  Google Scholar 

  70. Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow CW. l-Deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity In vitro. J Neurochem 1997;68:33–9.

    Article  CAS  PubMed  Google Scholar 

  71. Frandsen A, Schousboe A. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J Neurochem 1993;60:1202–11.

    Article  CAS  PubMed  Google Scholar 

  72. East S, Garthwaite J. NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the l-arginine-nitric oxide pathway. Neurosci Lett 1991;123:17–9.

    Article  CAS  PubMed  Google Scholar 

  73. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012;33:829–37.

    Article  PubMed  CAS  Google Scholar 

  74. Heiberg IL, Wegener G, Rosenberg R Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002;134:479–84.

    Article  CAS  PubMed  Google Scholar 

  75. Harkin A, Connor TJ, Burns MP, Kelly JP. Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 2004;14:274–81.

    Article  CAS  PubMed  Google Scholar 

  76. Nicola SM, Surmeier DJ, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185–215.

    Article  CAS  PubMed  Google Scholar 

  77. Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1999;1411:334–50.

    Article  CAS  PubMed  Google Scholar 

  78. Campbell S, MacQueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004;29:417.

    PubMed  PubMed Central  Google Scholar 

  79. Blackshaw S, Eliasson M, Sawa A, Watkins C, Krug D, Gupta A, et al. Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neuroscience 2003;119:979–90.

    Article  CAS  PubMed  Google Scholar 

  80. Lourenço C, Ferreira N, Santos R, Lukacova N, Barbosa R, Laranjinha J. The pattern ofglutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expressioninrathippocampus,cerebral cortexand striatum. Brain Res 2014;1554:1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad-Reza Dehpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostadhadi, S., Shakiba, S., Norouzi-Javidan, A. et al. The role of nitric oxide—cGMP pathway in selegiline antidepressant-like effect in the mice forced swim test. Pharmacol. Rep 70, 1015–1022 (2018). https://doi.org/10.1016/j.pharep.2018.05.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.05.004

Keywords

Navigation