Skip to main content
Log in

Locality of the windowed local density of states

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a generalization of local density of states which is “windowed” with respect to position and energy, called the windowed local density of states (wLDOS). This definition generalizes the usual LDOS in the sense that the usual LDOS is recovered in the limit where the position window captures individual sites and the energy window is a delta distribution. We prove that the wLDOS is local in the sense that it can be computed up to arbitrarily small error using spatial truncations of the system Hamiltonian. Using this result we prove that the wLDOS is well-defined and computable for infinite systems satisfying some natural assumptions. We finally present numerical computations of the wLDOS at the edge and in the bulk of a “Fibonacci SSH model”, a one-dimensional non-periodic model with topological edge states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The Fibonacci numbers are defined by \(F_0 = 0\), \(F_1 = 1\) and \(F_n = F_{n-1} + F_{n-2}\) for all \(n > 1\). A straightforward induction proves the stronger statement that the numbers of copies of S and L at stage n are \(F_{n+1}\) and \(F_{n+2}\) respectively.

References

  1. Aizenman, M., Warzel, S.: Random operators. In: Graduate Studies in Mathematics. Disorder Effects on Quantum Spectra and Dynamics, vol. 168. American Mathematical Society, Providence, pp. xiv+326 (2015)

  2. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142 (1997)

    Article  Google Scholar 

  3. Asbóth, J.K., Oroszlány, L., Pályi, A.: A Short Course on Topological Insulators, vol. 919. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Baake, M., Grimm, U.: Aperiodic Order. Encyclopedia of Mathematics and Its Applications, vol. 1. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  5. Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems: applications of a folklore theorem. J. Math. Phys. 61(12), 123505 (2020)

    Article  MathSciNet  Google Scholar 

  6. Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E.: Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95(7), 1–6 (2017)

    Article  Google Scholar 

  7. Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 1: locality of the tight binding model. Multiscale Model. Simul. 14(1), 232–264 (2016)

    Article  MathSciNet  Google Scholar 

  8. Colbrook, M., Horning, A., Townsend, A.: Computing spectral measures of self-adjoint operators. SIAM Rev. 63(3), 489–524 (2021)

    Article  MathSciNet  Google Scholar 

  9. Colbrook, M.J.: Computing spectral measures and spectral types. Commun. Math. Phys. 384, 433–501 (2021)

    Article  MathSciNet  Google Scholar 

  10. Colbrook, M.J., Horning, A., Thicke, K., Watson, A.B.: Computing spectral properties of topological insulators without artificial truncation or supercell approximation. IMA J. Appl. Math. 88(1), 1–42 (2023)

    Article  MathSciNet  Google Scholar 

  11. Colbrook, M.J., Roman, B., Hansen, A.C.: How to compute spectra with error control. Phys. Rev. Lett. 122(25), 250201 (2019)

    Article  MathSciNet  Google Scholar 

  12. Damanik, D.: One-dimensional ergodic Schr ö dinger operators. In: Graduate Studies in Mathematics, vol. 221. American Mathematical Society, Providence (2022)

  13. Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order, pp. 307–370. Springer, Basel (2015)

    Chapter  Google Scholar 

  14. Damanik, D., Gorodetski, A., Yessen, W.: The Fibonacci Hamiltonian. Invent. Math. 206, 629–692 (2016)

    Article  MathSciNet  Google Scholar 

  15. Delaney, J.A.C.: Local density of states for one-dimensional aperiodic binary sequences using local green’s function method. Ph.D. thesis. The University of Western Ontario (1998)

  16. Fefferman, C., Lee-Thorp, J.P., Weinstein, M.I.: Honeycomb Schrödinger operators in the strong binding regime. Commun. Pure Appl. Math. 71(6), 1178–1270 (2018)

    Article  Google Scholar 

  17. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71(4), 1085 (1999)

    Article  Google Scholar 

  18. Hastings, M.B., Loring, T.A.: Topological insulators and \(C^*\)-algebras: theory and numerical practice. Ann. Phys. 326(7), 1699–1759 (2011)

    Article  MathSciNet  Google Scholar 

  19. Horning, A.J.: Computing spectral properties of infinite-dimensional operators. English. Copyright—Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last updated—2023-03-08. Ph.D. thesis, p. 170 (2021)

  20. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18(3), 1059–1076 (1989)

    Article  MathSciNet  Google Scholar 

  21. Kaxiras, E., Joannopoulos, J.D.: Quantum Theory of Materials. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  22. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009)

    Article  Google Scholar 

  23. Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. SIAM Rev. 58(1), 34–65 (2016)

    Article  MathSciNet  Google Scholar 

  24. Loring, T.A.: A guide to the Bott Index and Localizer Index. Preprint arXiv:1907.11791 (2019)

  25. Loring, T.A.: \(K\)-theory and pseudospectra for topological insulators. Ann. Phys. 356, 383–416 (2015)

    Article  MathSciNet  Google Scholar 

  26. Loring, T.A.: Bulk spectrum and K-theory for infinite-area topological quasicrystals. J. Math. Phys. 60(8), 81903 (2019)

    Article  MathSciNet  Google Scholar 

  27. Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84(4), 1419 (2012)

    Article  Google Scholar 

  28. Massatt, D., Carr, S., Luskin, M., Ortner, C.: Incommensurate heterostructures in momentum space. Multiscale Model. Simul. 16(1), 429–451 (2018)

    Article  MathSciNet  Google Scholar 

  29. Massatt, D., Luskin, M., Ortner, C.: Electronic density of states for incommensurate layers. Multiscale Model. Simul. 15(1), 476–499 (2017)

    Article  MathSciNet  Google Scholar 

  30. Nakanishi, T., Kitaura, R., Kawai, T., Okada, S., Yoshida, S., Takeuchi, O., Shigekawa, H., Shinohara, H.: Modulation of the local density of states of carbon nanotubes by encapsulation of europium nanowires as observed by scanning tunneling microscopy and spectroscopy. J. Phys. Chem. C 121(33), 18195–18201 (2017)

    Article  Google Scholar 

  31. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H.J., Siggia, E.D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50, 1873–1876 (1983)

    Article  MathSciNet  Google Scholar 

  32. Persson, O., Webb, J.L., Dick, K.A., Thelander, C., Mikkelsen, A., Timm, R.: Scanning tunneling spectroscopy on InAs–GaSb Esaki diode nanowire devices during operation. Nano Lett. 15(6), 3684–3691 (2015)

    Article  Google Scholar 

  33. Prodan, E.: Quantum transport in disordered systems under magnetic fields: a study based on operator algebras. Appl. Math. Res. eXpress 2013(2), 176–265 (2012)

    MathSciNet  Google Scholar 

  34. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698 (1979)

    Article  Google Scholar 

  35. Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987)

    Article  Google Scholar 

  36. Weinan, E., Lu, J.: Electronic structure of smoothly deformed crystals: Cauchy–Born rule for the nonlinear tight-binding model. Commun. Pure Appl. Math. 63(11), 1432–1468 (2010)

    Article  MathSciNet  Google Scholar 

  37. Weinan, E., Lu, J.: The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy–Born rule. Arch. Ration. Mech. Anal. 199(2), 407–433 (2011)

    Article  MathSciNet  Google Scholar 

  38. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78(1), 275–306 (2006)

    Article  MathSciNet  Google Scholar 

  39. Zhong, J.X., You, J.Q., Yan, J.R., Yan, X.H.: Local electronic properties of one-dimensional quasiperiodic systems. Phys. Rev. B 43(16), 13778–13781 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Watson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of T. A. L. is based on work supported by the National Science Foundation under Grant No. DMS 1700102. The work of J. L. is supported in part by the U.S. National Science Foundation via grant DMS-2012286 and the U.S. Department of Energy via grant DE-SC0019449. The work of A. B. W. is supported in part by ARO MURI Award W911NF-14-0247. We are grateful to Lucien Jezequel for pointing out an alternative proof which allowed for a considerably weakened regularity hypothesis (3.4) in Lemma 3.1. We are also grateful to the anonymous reviewers whose suggestions improved this manuscript considerably.

Proofs of Lemma 3.1 and Proposition 3.2

Proofs of Lemma 3.1 and Proposition 3.2

In this section we give the proofs of Lemma 3.1 and Proposition 3.2.

1.1 Proof of Lemma 3.1

Before we can give the proof of Lemma 3.1 we require two preliminary Lemmas. Note that we take \(x = E = 0\) for simplicity.

Lemma A.1

Suppose that A and B are bounded linear operators, with A Hermitian. Then

$$\begin{aligned} \Vert [ e^{i t A}, B ] \Vert \le |t| \Vert [ A, B ] \Vert . \end{aligned}$$
(A.1)

Proof

First note that

$$\begin{aligned} \frac{\text {d}}{\text {d}t} \Bigl ( e^{i t A} B e^{- i t A}\Bigr ) = i e^{i t A} [ A, B ] e^{- i t A}. \end{aligned}$$
(A.2)

Integrating from 0 to t, we get

$$\begin{aligned} e^{i t A} B e^{- i t A} - B = i \int _{0}^{t} \! e^{i s A} [ A, B ] e^{- i s A} \, \text {d}s . \end{aligned}$$
(A.3)

We now move to proving the estimate starting with

$$\begin{aligned} \Vert [ e^{i t A}, B ] \Vert = \Vert e^{i t A} B - B e^{i t A} \Vert = \Vert e^{i t A} B e^{- i t A} - B \Vert . \end{aligned}$$
(A.4)

Using (A.3) we now have

$$\begin{aligned} \Vert [ e^{i t A}, B ] \Vert = \left\| \int _{0}^{t} \! e^{i s A} [ A, B ] e^{- i s A} \, \text {d}s \right\| \le |t| \Vert [A,B] \Vert . \end{aligned}$$
(A.5)

\(\square \)

Lemma A.2

Let H and X be self-adjoint operators with H bounded. Let g and k be functions on \({\mathbb {R}}\) with \(0 \le g \le 1\), \(0 \le k \le 1\) and \(k g = g\). Then

$$\begin{aligned} \Vert g^{\frac{1}{2}}(X) e^{i t H} g^{\frac{1}{2}}(X) {-} g^{\frac{1}{2}}(X) e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \Vert {\le } |t| ( 1 + |t| \Vert H \Vert ) \Vert [k(X),H] \Vert .\nonumber \\ \end{aligned}$$
(A.6)

Proof

First note that

$$\begin{aligned}{} & {} \left\| g^{\frac{1}{2}}(X) e^{i t H} g^{\frac{1}{2}}(X) - g^{\frac{1}{2}}(X) e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \right\| \nonumber \\{} & {} \quad \le \left\| g^{\frac{1}{2}}(X) - e^{- i t H} e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \right\| \nonumber \\{} & {} \quad \le \int _{0}^{t} \! \left\| \frac{\text {d}}{\text {d}s} \left( g^{\frac{1}{2}}(X) - e^{- i s H} e^{i s k(X) H k(X)} g^{\frac{1}{2}}(X) \right) \right\| \, \text {d}s \nonumber \\{} & {} \quad = \int _{0}^{t} \! \left\| \frac{\text {d}}{\text {d}s} \left( e^{- i s H} e^{i s k(X) H k(X)} g^{\frac{1}{2}}(X) \right) \right\| \, \text {d}s .\nonumber \\ \end{aligned}$$
(A.7)

Clearly,

$$\begin{aligned} \frac{\text {d}}{\text {d}t} \left( e^{- i t H} e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \right) {=} i e^{- i t H} \left( k(X) H k(X) {-} H \right) e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X).\nonumber \\ \end{aligned}$$
(A.8)

Re-arranging the right-hand side of (A.8) and using \(k g = k\) gives

$$\begin{aligned}{} & {} \frac{\text {d}}{\text {d}t} \left( e^{- i t H} e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \right) \nonumber \\{} & {} \quad = i e^{- i t H} \left( [k(X),H] e^{i t k(X) H k(X)} \right) g^{\frac{1}{2}}(X) \nonumber \\{} & {} \quad \quad + i e^{- i t H} \left( k(X) H [ k(X), e^{i t k(X) H k(X)} ] + H [ k(X), e^{i t k(X) H k(X)} ] \right) g^{\frac{1}{2}}(X).\nonumber \\ \end{aligned}$$
(A.9)

The first term on the right-hand side of (A.9) can be bounded by \(\Vert [k(X),H] \Vert \). Using Lemma A.1 we have

$$\begin{aligned} \Vert [ k(X), e^{i t k(X) H k(X)} ] \Vert \le |t| \Vert [ k(X), k(X) H k(X) ] \Vert = |t| \Vert [ k(X), H ] \Vert \end{aligned}$$
(A.10)

and hence the second two terms on the right-hand side of (A.9) are bounded by \(2 |t| \Vert H \Vert \Vert [ k(X), H ] \Vert \). Substituting these estimates into (A.7) we have

$$\begin{aligned}{} & {} \left\| g^{\frac{1}{2}}(X) e^{i t H} g^{\frac{1}{2}}(X) - g^{\frac{1}{2}}(X) e^{i t k(X) H k(X)} g^{\frac{1}{2}}(X) \right\| \nonumber \\{} & {} \quad \le \int _{0}^{t} \! \Vert [k(X),H] \Vert + 2 |s| \Vert H \Vert \Vert [k(X),H] \Vert \, \text {d}s \nonumber \\{} & {} \quad \le |t| ( 1 + |t| \Vert H \Vert ) \Vert [k(X),H] \Vert \nonumber \\ \end{aligned}$$
(A.11)

as required. \(\square \)

We can now give the proof of Lemma 3.1.

Proof of Lemma 3.1

Let \(\ell \) be the inverse Fourier transform of \(f'\), so

$$\begin{aligned} f'(\xi )=\int _{-\infty }^{\infty }\ell (t)e^{it\xi }\,dt. \end{aligned}$$
(A.12)

For bounded Hermitian operators K, we have by functional calculus that

$$\begin{aligned} f(K)=f(0)I+\int _{-\infty }^{\infty }\frac{\ell (t)}{it}(e^{itK}-I)\,dt. \end{aligned}$$
(A.13)

It then follows that

$$\begin{aligned} g^{\frac{1}{2}}(X)f(K)g^{\frac{1}{2}}(X)=f(0)g(X)+\int _{-\infty }^{\infty }\frac{\ell (t)}{it}\left( g^{\frac{1}{2}}(X)e^{itK}g^{\frac{1}{2}}(X)-g(X)\right) \,dt.\nonumber \\ \end{aligned}$$
(A.14)

Comparing this identity with \(K=H\) and \(K=k(X)Hk(X)\) we find

$$\begin{aligned}&g^{\frac{1}{2}}(X)f(H)g^{\frac{1}{2}}(X)-g^{\frac{1}{2}}(X)f(k(X) H k(X))g^{\frac{1}{2}}(X)\\&\qquad =\int _{-\infty }^{\infty }\frac{\ell (t)}{it}\left( g^{\frac{1}{2}}(X)e^{itH}g^{\frac{1}{2}}(X)-g^{\frac{1}{2}}(X)e^{itk(X)Hk(X)}g^{\frac{1}{2}}(X)\right) \,dt. \end{aligned}$$

Therefore

$$\begin{aligned}&\left\| g^{\frac{1}{2}}(X)f(H)g^{\frac{1}{2}}(X)-g^{\frac{1}{2}}(X)f(k(X) H k(X) ) g^{\frac{1}{2}}(X)\right\| \\&\qquad \le \int _{-\infty }^{\infty }\frac{\left| \ell (t)\right| }{\left| t\right| }\left( |t| ( 1 + |t| \Vert H \Vert ) \Vert [k(X),H] \Vert \right) \,dt\\&\qquad = \left\| \left[ k(X),H\right] \right\| \int _{-\infty }^{\infty } ( 1 + | t | \Vert H \Vert ) \left| \ell (t)\right| \,dt. \end{aligned}$$

Since \(\ell (t) = i t \widehat{f}(t)\) the statement follows.

1.2 Proof of Proposition 3.2

We now prove Proposition 3.2. We again start with a preliminary Lemma.

Lemma A.3

Suppose that A and B are bounded matrices, with A Hermitian, and suppose \(k \in C^1(\mathbb {R})\) is such that

$$\begin{aligned} k'(x) = \int _{-\infty }^{\infty } \! \ell (t) e^{i t x} \, \text {d}t \end{aligned}$$
(A.15)

for some \(\ell (t) \in L^1(\mathbb {R})\). Then

$$\begin{aligned} \Vert [ k(A), B ] \Vert \le \Vert \ell \Vert _{L^1} \Vert [ A, B ] \Vert . \end{aligned}$$
(A.16)

Proof

Using (A.15), we have

$$\begin{aligned} k(x){} & {} = k(0) + \int _{0}^{x} \! k'(y) \, \text {d}y \nonumber \\{} & {} = k(0) + \int _{0}^{x} \! \int _{-\infty }^{\infty } \! \ell (t) e^{i t y} \, \text {d}t \, \text {d}y \nonumber \\{} & {} = k(0) + \int _{-\infty }^{\infty } \! \ell (t) \int _{0}^{x} \! e^{i t y} \, \text {d}y \, \text {d}t \nonumber \\{} & {} = k(0) + \int _{-\infty }^{\infty } \! \ell (t) \left( \frac{ e^{i t x} - 1 }{ i t } \right) \, \text {d}t . \nonumber \\ \end{aligned}$$
(A.17)

Hence

$$\begin{aligned} k(A) = k(0) I + \int _{-\infty }^{\infty } \! \frac{ \ell (t) }{ i t } \left( e^{i t A} - 1 \right) \, \text {d}t , \end{aligned}$$
(A.18)

where the integral is well-defined because

$$\begin{aligned} \Vert e^{i t A} - 1 \Vert \le | t | \Vert A \Vert \end{aligned}$$
(A.19)

(to see this differentiate the operator on the left-hand side). From (A.18), we have that

$$\begin{aligned}{}[ k(A), B ] = \int _{-\infty }^{\infty } \! \frac{ \ell (t) }{ i t } [ e^{i t A}, B ] \, \text {d}t . \end{aligned}$$
(A.20)

The result now follows by Lemma A.1. \(\square \)

We are now in a position to give an explicit construction of \(k_\alpha (\xi )\) equalling 1 for all \(\xi \in [-L,L]\) and satisfying (3.7).

Proof of Proposition 3.2

Fix \(L > 0\), and define \(M_L\) to be the smallest integer such that \(2 M_L > L\). Define \(k(\xi )\) as in (2.12), i.e.

$$\begin{aligned} k(\xi ) = {\left\{ \begin{array}{ll} 0 &{} \xi \le -2 \\ \frac{1}{2} (\xi + 2)^2 &{} -2< \xi \le -1 \\ 1 - \frac{1}{2} \xi ^2 &{} -1< \xi \le 1 \\ \frac{1}{2} (\xi - 2)^2 &{} 1 < \xi \le 2 \\ 0 &{} 2 \le \xi . \end{array}\right. } \end{aligned}$$
(A.21)

It is clear that

$$\begin{aligned} k(\xi ) + k(\xi -2) = {\left\{ \begin{array}{ll} 0 &{} \xi \le -2 \\ \frac{1}{2}(\xi +2)^2 &{} -2< \xi \le -1 \\ 1 - \frac{1}{2}\xi ^2 &{} -1< \xi \le 0 \\ 1 &{} 0< \xi \le 2 \\ 1 - \frac{1}{2} (\xi - 2)^2 &{} 2 \le \xi< 3 \\ \frac{1}{2}(\xi - 4)^2 &{} 3< \xi \le 4 \\ 0 &{} 4 < \xi , \end{array}\right. } \end{aligned}$$
(A.22)

and more generally,

$$\begin{aligned} k_1(\xi ):= \sum _{l = -M}^M k(\xi - 2 l) = {\left\{ \begin{array}{ll} 0 &{} \xi \le - 2 M - 2 \\ \frac{1}{2}(\xi + 2 M + 2)^2 &{} - 2 M - 2 \le \xi \le - 2 M - 1 \\ 1 - \frac{1}{2}(\xi + 2M)^2 &{} - 2 M - 1 \le \xi \le - 2 M \\ 1 &{} -2 M \le \xi \le 2 M \\ 1 - \frac{1}{2} (\xi - 2 M)^2 &{} 2 M \le \xi \le 2 M + 1 \\ \frac{1}{2}(\xi - 2 M - 2)^2 &{} 2 M + 1 \le \xi \le 2 M + 2 \\ 0 &{} \xi \ge 2 M + 2. \end{array}\right. } \end{aligned}$$
(A.23)

Using the fact that \(2 M > L\) by assumption, we have that \(k_1(\xi )\) acts by 1 over the whole interval \([-L,L]\). For positive \(\alpha \), we now define

$$\begin{aligned} k_\alpha (\xi ):= k_1(\alpha \xi ). \end{aligned}$$
(A.24)

It is easy to see that \(k_\alpha (\xi )\) acts as 1 over the interval \(\left[ -\frac{2 M}{\alpha },\frac{2 M}{\alpha }\right] \) and hence acts as 1 over the interval \(\left[ -\frac{L}{\alpha },\frac{L}{\alpha }\right] \), which contains \([-L,L]\) for \(0< \alpha < 1\). The support of \(k_\alpha (\xi )\) is clearly confined to \(\left[ - \frac{2\,M+2}{\alpha }, \frac{2\,M + 2}{\alpha } \right] \). Using the definition of M as the smallest integer such that \(2 M > L\) we see that \(L \le 2\,M \le L + 2 \le 2\,M + 2 \le L + 4\) and hence the support of \(k_\alpha (\xi )\) is confined to \(\left[ - \frac{ 2\,M + 4 }{ \alpha }, \frac{ 2\,M + 4 }{ \alpha } \right] \).

We will now prove that \(k_\alpha (\xi )\) satisfies the bound (3.7) using Lemma A.3. Our strategy is to build up to a bound on the Fourier transform of \(k_\alpha '(\xi )\) from a bound on the Fourier transform of \(k'(\xi )\).

We start by noting that if \(k(\xi )\) is defined by (A.21), then

$$\begin{aligned} k'(\xi ) = {\left\{ \begin{array}{ll} 0 &{} \xi \le -2 \\ \xi + 2 &{} -2< \xi \le -1 \\ - \xi &{} -1< \xi \le 1 \\ \xi - 2 &{} 1 < \xi \le 2 \\ 0 &{} 2 \le \xi . \end{array}\right. } \end{aligned}$$
(A.25)

Since \(k'(\xi )\) is odd, its Fourier transform \(\ell (t)\) equals

$$\begin{aligned} \ell (t){} & {} := - \frac{i}{\pi } \int _{0}^{\infty } \! k'(\xi ) \sin (t \xi ) \, \text {d}\xi \nonumber \\{} & {} = - \frac{i}{\pi } \left[ \int _{0}^{1} \! (- \xi ) \sin (t \xi ) \, \text {d}\xi + \int _{1}^{2} \! (\xi - 2) \sin (t \xi ) \, \text {d}\xi \right] . \end{aligned}$$
(A.26)

Integrating by parts in these integrals we have

$$\begin{aligned} \int _{0}^{1} \! (- \xi ) \sin (t \xi ) \, \text {d}\xi= & {} \frac{ \cos (t) }{ t } - \frac{ \sin (t) }{ t^2 } \end{aligned}$$
(A.27)
$$\begin{aligned} \int _{1}^{2} \! (\xi - 2) \sin (t \xi ) \, \text {d}\xi= & {} - \frac{ \cos (t) }{ t } + \frac{ \sin (2 t) }{ t^2 } - \frac{ \sin (t) }{ t^2 } \end{aligned}$$
(A.28)

and hence

$$\begin{aligned} \ell (t) = - \frac{i}{\pi } \frac{ \sin (2 t) - 2 \sin (t) }{ t^2 }, \end{aligned}$$
(A.29)

which is clearly in \(L^1(\mathbb {R})\). In fact, numerical computation shows that \(\Vert \ell \Vert _1 \approx 1.27\) (3sf). Now let \(\ell _1(t)\) denote the Fourier transform of \(k_1'(\xi )\). Using linearity and a change of variables we have

$$\begin{aligned} \ell _1(t) = \sum _{l = - M}^M e^{- 2 i l t} \ell (t). \end{aligned}$$
(A.30)

Using the triangle inequality we have

$$\begin{aligned} \Vert \ell _1 \Vert _{L^1} \le (2 M + 1) \Vert \ell \Vert _{L^1}. \end{aligned}$$
(A.31)

Finally, let \(\ell _\alpha (t)\) denote the Fourier transform of \(k_\alpha '(\xi )\). Since \(k_\alpha '(\xi ) = \alpha k_1'(\alpha \xi )\), we see that

$$\begin{aligned} \ell _\alpha (t) = \frac{1}{2 \pi } \int _{-\infty }^{\infty } \! \alpha k_1'(\alpha \xi ) e^{- i t \xi } \, \text {d}\xi = \ell _1 \left( \frac{t}{\alpha }\right) , \end{aligned}$$
(A.32)

from which it follows immediately that

$$\begin{aligned} \Vert \ell _\alpha (t) \Vert _{L^1} = \alpha \Vert \ell _1(t) \Vert _{L^1} \le (2 M + 1) \alpha \Vert \ell (t) \Vert _{L^1}. \end{aligned}$$
(A.33)

Applying Lemma A.3 now proves Proposition 3.2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loring, T.A., Lu, J. & Watson, A.B. Locality of the windowed local density of states. Numer. Math. 156, 741–775 (2024). https://doi.org/10.1007/s00211-024-01400-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-024-01400-3

Mathematics Subject Classification

Navigation