Skip to main content
Log in

An adaptive finite element DtN method for the elastic wave scattering problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Consider the scattering of an incident wave by a rigid obstacle, which is immersed in a homogeneous and isotropic elastic medium in two dimensions. Based on a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition is introduced and the scattering problem is formulated as a boundary value problem of the elastic wave equation in a bounded domain. By developing a new duality argument, an a posteriori error estimate is derived for the discrete problem by using the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator, where the latter decays exponentially with respect to the truncation parameter. An adaptive finite element algorithm is proposed to solve the elastic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are chosen through the finite element discretization error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babuška, I., Aziz, A.: Survey lectures on mathematical foundations of the finite element method. In: Aziz, A. (ed.) The Mathematical Foundation of the Finite Element Method with Application to the Partial Differential Equations, pp. 5–359. Academic Press, New York (1973)

    Google Scholar 

  2. Babuška, I., Werner, C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, G., Hu, G., Sun, J., Yin, T.: Direct and inverse elastic scattering from anisotropic media. J. Math. Pures Appl. 117, 263–301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79, 1–34 (2010)

    Article  MATH  Google Scholar 

  5. Bao, G., Wu, H.: Convergence analysis of the perfectly matched layer problems for time harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43, 2121–2143 (2005)

  6. Bayliss, A., Turkel, E.: Radiation boundary conditions for numerical simulation of waves. Commun. Pure Appl. Math. 33, 707–725 (1980)

    Article  MATH  Google Scholar 

  7. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Trenev, D.: Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79, 2079–2101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element method. In: Computers & Mathematics with Applications (2003)

  10. Chen, J., Chen, Z.: An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77, 673–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43, 645–671 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Xiang, X., Zhang, X.: Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85, 2687–2714 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chew, W., Liu, Q.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comput. Acoust. 4, 341–359 (1996)

    Article  Google Scholar 

  15. Chew, W., Weedon, W.: A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 13, 599–604 (1994)

  16. Ciarlet, P.G.: Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1988)

    Google Scholar 

  17. Collino, F., Tsogka, C.: Application of the PML absorbing layer model to the linear elastodynamics problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  18. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  19. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gächter, G.K., Grote, M.J.: Dirichlet-to-Neumann map for three-dimensional elastic waves. Wave Motion 37, 293–311 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions for elastic waves. Wave Motion 12, 261–279 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grote, M., Kirsch, C.: Dirichlet-to-Neumann boundary conditions for multiple scattering problems. J. Comput. Phys. 201, 630–650 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grote, M., Keller, J.: On nonreflecting boundary conditions. J. Comput. Phys. 122, 231–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hastings, F.D., Schneider, J.B., Broschat, S.L.: Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am. 100, 3061–3069 (1996)

    Article  Google Scholar 

  26. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hohage, T., Schmidt, F., Zschiedrich, L.: Solving time-harmonic scattering problems based on the pole condition. II: convergence of the PML method. SIAM J. Math. Anal. 35, 547–560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hsiao, G.C., Nigam, N., Pasiak, J.E., Xu, L.: Error analysis of the DtN-FEM for the scattering problem in acoustic via Fourier analysis. J. Comput. Appl. Math. 235, 4949–4965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, X., Li, P., Lv, J., Zheng, W.: An adaptive finite element method for the wave scattering with transparent boundary condition. J. Sci. Comput. 72, 936–956 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, X., Li, P.: An adaptive finite element PML method for the acoustic-elastic interaction in three dimensions. Commun. Comput. Phys. 22, 1486–1507 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, X., Li, P., Lv, J., Wang, Z., Wu, H., Zheng, W.: An adaptive finite element DtN method for Maxwell’s equations in biperiodic structures. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drab052

  32. Jiang, X., Li, P., Zheng, W.: Numerical solution of acoustic scattering by an adaptive DtN finite element method. Commun. Comput. Phys. 13, 1277–1244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, X., Li, P., Lv, J., Zheng, W.: An adaptive finite element PML method for the elastic wave scattering problem in periodic structures. ESAIM Math. Model. Numer. Anal. 51, 2017–2047 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiang, X., Li, P., Lv, J., Zheng, W.: Convergence of the PML solution for elastic wave scattering by biperiodic structures. Commun. Math. Sci. 16, 985–1014 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Komatitsch, D., Tromp, J.: A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys. J. Int. 154, 146–153 (2003)

    Article  Google Scholar 

  36. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Theory of Elasticity. Pergamon Press, Oxford (1986)

    Google Scholar 

  37. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, P., Wang, Y., Wang, Z., Zhao, Y.: Inverse obstacle scattering for elastic waves. Inverse Prob. 32, 115018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, P., Yuan, X.: Inverse obstacle scattering for elastic waves in three dimensions. Inverse Probl. Imaging 13, 545–573 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y., Zheng, W., Zhu, X.: A CIP-FEM for high frequency scattering problem with the truncated DtN boundary condition. CSIAM Trans. Appl. Math. 1, 530–560 (2020)

    Article  Google Scholar 

  41. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

  42. Nédélec, J.-C.: Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems. Springer, New York (2001)

    Book  MATH  Google Scholar 

  43. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  44. Turkel, E., Yefet, A.: Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Z., Bao, G., Li, J., Li, P., Wu, H.: An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53, 1585–1607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  47. Yuan, X., Bao, G., Li, P.: An adaptive finite element DtN method for the open cavity scattering problems. CSIAM Trans. Appl. Math. 1, 316–345 (2020)

    Article  Google Scholar 

  48. Zhou, W., Wu, H.: An adaptive finite element method for the diffraction grating problem with PML and few-mode DtN truncations. J. Sci. Comput. 76, 1813–1838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous referees for their insightful comments and suggestions that have helped us improve the results of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of PL is supported in part by the NSF grant DMS-1912704.

Appendix A. Transparent boundary conditions

Appendix A. Transparent boundary conditions

In this section, we show the transparent boundary conditions for the scalar potential functions \(\phi ^s, \psi ^s\) and the displacement of the scattered field \({\varvec{u}}^s\) on \(\partial B_R\).

In the exterior domain \({\mathbb {R}}^2{\setminus }{{\overline{B}}}_R\), the solutions of the Helmholtz equations (2.5) have the Fourier series expansions in the polar coordinates:

$$\begin{aligned} \phi ^s(r,\theta )=\sum _{n\in {\mathbb {Z}}}\frac{H^{(1)}_n(\kappa _1 r)}{H_{n}^{(1)} (\kappa _1 R)} \phi ^s_n(R)e^{\mathrm{i}n\theta },\quad \psi ^s(r,\theta )=\sum _{n\in {\mathbb {Z}}}\frac{H^{(1)}_n(\kappa _2 r)}{H_{n}^{(1)}(\kappa _2 R)}\psi ^s_n(R)e^{\mathrm{i}n\theta }, \end{aligned}$$
(A.1)

where \(H_n^{(1)}\) is the Hankel function of the first kind with order n. Taking the normal derivative of (A.1), we obtain the transparent boundary condition for the scalar potentials \(\phi ^s, \psi ^s\) on \(\partial B_R\):

$$\begin{aligned} \partial _r\phi ^s= & {} {\mathscr {T}}_1\phi ^s:=\sum \limits _{n\in {\mathbb {Z}}} \frac{\kappa _1 H_n^{(1)'}(\kappa _1 R)}{H_{n}^{(1)}(\kappa _1 R)} \phi ^s_n(R)e^{\mathrm{i}n\theta },\nonumber \\ \partial _r \psi ^s= & {} {\mathscr {T}}_2 \psi ^s:=\sum \limits _{n\in {\mathbb {Z}}} \frac{\kappa _2 H_n^{(1)'}(\kappa _2 R)}{H_{n}^{(1)}(\kappa _2 R)} \psi ^s_n(R)e^{\mathrm{i}n\theta }. \end{aligned}$$
(A.2)

The polar coordinates \((r, \theta )\) are related to the Cartesian coordinates \({\varvec{x}}=(x, y)\) by \(x=r\cos \theta , y=r\sin \theta \) with the local orthonormal basis \(\{{\varvec{e}}_r, \varvec{e}_\theta \}\), where \({\varvec{e}}_r=(\cos \theta , \sin \theta )^\top , {\varvec{e}}_\theta =(-\sin \theta , \cos \theta )^\top \).

Define a boundary operator for the displacement of the scattered wave

$$\begin{aligned} {\mathscr {B}} {\varvec{u}}^s =\mu \partial _r {\varvec{u}}^s +(\lambda +\mu )(\nabla \cdot {\varvec{u}}^s) \varvec{e}_r\quad \text {on}\,\partial B_R. \end{aligned}$$

Based on the Helmholtz decomposition (2.5) and the transparent boundary condition (A.2), it is shown in [38] that the scattered field \({\varvec{u}}\) satisfies the transparent boundary condition

$$\begin{aligned} {\mathscr {B}}{\varvec{u}}^s =({\mathscr {T}}{\varvec{u}}^s)(R, \theta ):=\sum _{n\in {\mathbb {Z}}}M_n{\varvec{u}}^s_n(R) e^{\mathrm{i}n\theta }\quad \text {on}\,\partial B_R, \end{aligned}$$
(A.3)

where

$$\begin{aligned} {\varvec{u}}^s(R, \theta )=\sum _{n\in {\mathbb {Z}}}{\varvec{u}}^s_n(R) e^{\mathrm{i}n\theta }=\sum _{n\in {\mathbb {Z}}}\big (u_n^{s, r}(R)\varvec{e}_r + u_n^{s, \theta }(R){\varvec{e}}_\theta \big ) e^{\mathrm{i}n\theta } \end{aligned}$$

and \(M_n\) is a \(2\times 2\) matrix defined by

$$\begin{aligned} M_n=\begin{bmatrix} M_{11}^{(n)} &{} M_{12}^{(n)}\\ M_{21}^{(n)} &{} M_{22}^{(n)} \end{bmatrix} =\frac{1}{\Lambda _n(R)}\begin{bmatrix} N_{11}^{(n)} &{} N_{12}^{(n)}\\ N_{21}^{(n)} &{} N_{22}^{(n)} \end{bmatrix}. \end{aligned}$$
(A.4)

Here

$$\begin{aligned} \Lambda _n(R)=\left( \frac{n}{R}\right) ^2-\alpha _{1n}(R)\alpha _{2n}(R), \quad \alpha _{jn}(R)=\frac{\kappa _j H_n^{(1)'}(\kappa _j R)}{H_{n}^{(1)}(\kappa _j R)}, \end{aligned}$$
(A.5)

and

$$\begin{aligned} N_{11}^{(n)} =&\mu \left( \frac{n}{R}\right) ^2\Big (\alpha _{2n}(R)-\frac{1}{R}\Big ) -\alpha _{2n}(R)\bigg [(\lambda +2\mu )\frac{\kappa _1^2 H_{n}^{(1)''}(\kappa _1 R)}{H_{n}^{(1)}(\kappa _1 R))}\\&\qquad +(\lambda +\mu )\Big (\frac{1}{R}\alpha _{1n}(R)-\left( \frac{n}{R} \right) ^2\Big )\bigg ], \\ N_{12}^{(n)}=&\mu \frac{\mathrm{i}n}{R}\alpha _{1n}(R)\Big (\alpha _{2n}(R)-\frac{1}{R}\Big ) -\frac{\mathrm{i}n}{R} \bigg [(\lambda +2\mu )\frac{\kappa _1^2 H_{n}^{(1)''}(\kappa _1 R)}{H_{n}^{(1)}(\kappa _1 R))}\\&\qquad +(\lambda +\mu )\Big (\frac{1}{R}\alpha _{1n}(R)-\left( \frac{n}{R} \right) ^2\Big )\bigg ],\\ N_{21}^{(n)} =&-\mu \frac{\mathrm{i}n}{R}\alpha _{2n}(R)\Big (\alpha _{1n}(R)-\frac{1}{R}\Big ) +\mu \frac{\mathrm{i}n}{R}\frac{\kappa _2^2 H_{n}^{(1)''}(\kappa _2 R)}{H_{n}^{(1)}(\kappa _2 R)},\\ N_{22}^{(n)} =&\mu \left( \frac{n}{R}\right) ^2 \Big (\alpha _{1n}(R)-\frac{1}{R}\Big ) -\mu \alpha _{1n}(R)\frac{\kappa _2^2 H_{n}^{(1)''}(\kappa _2 R)}{H_{n}^{(1)}(\kappa _2 R)}. \end{aligned}$$

The matrix entries \(N_{ij}^{(n)}, i,j=1, 2\) can be further simplified. Recall that the Hankel function \(H_n^{(1)}(z)\) satisfies the Bessel differential equation

$$\begin{aligned} z^2 H_n^{(1)''}(z)+z H_n^{(1)'} (z)+(z^2-n^2) H_{n}^{(1)}(z)=0. \end{aligned}$$

We have from straightforward calculations that

$$\begin{aligned} N_{11}^{(n)}&=-\alpha _{2n}(R)\Bigg [(\lambda +2\mu )\bigg [-\frac{1}{R^2} \Big (\kappa _j R \frac{H^{(1)'}_n(\kappa _j R)}{H^{(1)}_n(\kappa _j R)}+\left( (\kappa _j R)^2-n^2\right) \Big )\bigg ]\\&\qquad +(\lambda +\mu )\left( \frac{1}{R}\alpha _{1n}(R)-\left( \frac{n}{R} \right) ^2\right) \Bigg ] +\mu \left( \frac{n}{R}\right) ^2\left( \alpha _{2n} (R)-\frac{1}{R}\right) \\&\quad =-\alpha _{2n}(R)\Bigg [-\left( \frac{\lambda +2\mu }{R}\right) \alpha _{1n} (R)-(\lambda +2\mu )\kappa _1^2\\&\qquad +(\lambda +2\mu )\left( \frac{n}{R}\right) ^2 +\left( \frac{\lambda +\mu }{R}\right) \alpha _{1n}(R)\\&\qquad -(\lambda +\mu )\left( \frac{n}{R}\right) ^2\Bigg ] +\mu \left( \frac{n}{R}\right) ^2\left( \alpha _{2n}(R)-\frac{1}{R}\right) \\&=-\frac{\mu }{R}\left[ \left( \frac{n}{R}\right) ^2-\alpha _{1n}(R)\alpha _{2n} (R)\right] +\alpha _{2n}(R)\omega ^2\\&= -\frac{\mu }{R}\Lambda _n(R)+\alpha _{2n}(R)\omega ^2,\\ N_{12}^{(n)}&= -\frac{\mathrm{i}n}{R}\Bigg [(\lambda +2\mu )\bigg [-\frac{1}{R^2}\Big (\kappa _j R \frac{H^{(1)'}_n(\kappa _j R)}{H^{(1)}_n(\kappa _j R)}+\left( (\kappa _j R)^2-n^2\right) \Big )\bigg ]\\&\qquad +(\lambda +\mu )\left( \frac{1}{R}\alpha _{1n}(R)-\left( \frac{n}{R} \right) ^2\right) \Bigg ] \\&\qquad +\frac{\mathrm{i}n\mu }{R}\alpha _{1n}(R)\alpha _{2n}(R)-\mu \frac{\mathrm{i}n}{R^2}\alpha _{1n}(R)\\&= -\frac{\mathrm{i}n}{R}\left[ -\frac{\mu }{R}\alpha _{1n}(R)+\mu \left( \frac{n}{R}\right) ^2 -(\lambda +2\mu )\kappa _1^2\right] \\&\qquad +\frac{\mathrm{i}n\mu }{R}\alpha _{1n}(R)\alpha _{2n}(R)-\frac{\mathrm{i}n}{R^2}\mu \alpha _{1n}(R)\\&= -\frac{\mathrm{i}n\mu }{R}\Lambda _n(R)+\frac{\mathrm{i}n}{R}\omega ^2,\\ N_{21}^{(n)}&= -\mu \frac{\mathrm{i}n}{R}\alpha _{2n}(R)\alpha _{1n}(R)+\frac{\mathrm{i}n\mu }{R^2}\alpha _{2n}(R) \\&\qquad +\mu \frac{\mathrm{i}n}{R}\left( \frac{-1}{R^2}\right) \left( R\alpha _{2n}(R)+(\kappa _2 R)^2-n^2\right) \\&= -\mu \frac{\mathrm{i}n}{R}\alpha _{1n}(R)\alpha _{2n}(R)+\frac{\mathrm{i}n\mu }{R^2}\alpha _{2n}(R) -\mu \frac{\mathrm{i}n}{R^2}\alpha _{2n}(R)-\frac{\mathrm{i}n\mu }{R}\kappa _2^2+\mathrm{i}\mu \left( \frac{n}{R}\right) ^3\\&= \frac{\mathrm{i}\mu n}{R}\Lambda _n(R)-\frac{\mathrm{i}n}{R}\omega ^2,\\ N_{22}^{(n)}&= \mu \left( \frac{n}{R}\right) ^2\alpha _{1n}(R)-\frac{\mu }{R}\left( \frac{n}{R} \right) ^2-\mu \alpha _{1n}(R)\frac{-1}{R^2}\left( R\alpha _{2n}(R)+(\kappa _2 R)^2-n^2\right) \\&=\mu \left( \frac{n}{R}\right) ^2\alpha _{1n}(R)-\frac{\mu }{R}\left( \frac{n}{R }\right) ^2+\frac{\mu }{R}\alpha _{1n}(R)\alpha _{2n}(R)\\&\qquad +\alpha _{1n}(R)\mu \kappa _2^2-\mu \left( \frac{n}{R}\right) ^2\alpha _{1n}(R)\\&=-\frac{\mu }{R}\left( \left( \frac{n}{R}\right) ^2-\alpha _{1n}(R)\alpha _{2n} (R)\right) +\alpha _{1n}(R)\omega ^2\\&=-\frac{\mu }{R}\Lambda _n(R)+\alpha _{1n}(R)\omega ^2. \end{aligned}$$

Substituting the above into (A.3), we obtain

$$\begin{aligned} {\mathscr {B}}{\varvec{u}}^s&= {\mathscr {T}}{\varvec{u}}^s =\sum \limits _{n\in {\mathbb {Z}}}\frac{1}{\Lambda _n}\bigg \{ \Big [\Big (-\frac{\mu }{R}\Lambda _n(R)+\alpha _{2n}(R)\omega ^2\Big ) u_n^{s, r}(R) \nonumber \\&\quad +\Big (-\frac{\mathrm{i}n\mu }{R}\Lambda _n(R)+\frac{\mathrm{i}n}{R}\omega ^2\Big ) u_n^{s, \theta }(R)\Big ] {\varvec{e}}_r \nonumber \\&\quad + \Big [\Big (\frac{\mathrm{i}\mu n}{R}\Lambda _n(R)-\frac{\mathrm{i}n}{R}\omega ^2 \Big )u_n^{s, r}(R) \nonumber \\&\quad +\Big (-\frac{\mu }{R}\Lambda _n(R)+\alpha _{1n}(R)\omega ^2 \Big )u_n^{s, \theta }(R)\Big ]{\varvec{e}}_{\theta } \bigg \} e^{\mathrm{i}n\theta }. \end{aligned}$$
(A.6)

Lemma A.1

Let \(z>0\). For sufficiently large |n|, \(\Lambda _n(z)\) admits the following asymptotic property

$$\begin{aligned} \Lambda _n(z)=\frac{1}{2}(\kappa _1^2+\kappa _2^2)+{\mathcal {O}}\Big (\frac{1}{|n|}\Big ). \end{aligned}$$

Proof

Using the asymptotic expansions of the Hankel functions [46]

$$\begin{aligned} \frac{H_n^{(1)'}(z)}{H_n^{(1)}(z)}=-\frac{|n|}{z}+\frac{z}{2|n|}+{\mathcal {O}} \Big (\frac{1}{|n|^2}\Big ), \end{aligned}$$

we have

$$\begin{aligned} \alpha _{jn}(z)=\frac{\kappa _j H_n^{(1)'}(\kappa _j z)}{H_{n}^{(1)}(\kappa _j z)}=-\frac{|n|}{z}+\frac{\kappa ^2_j z}{2|n|}+{\mathcal {O}} \Big (\frac{1}{|n|^2}\Big ). \end{aligned}$$
(A.7)

A simple calculation yields that

$$\begin{aligned} \Lambda _n(z)=\left( \frac{n}{z}\right) ^2-\alpha _{1n}(z)\alpha _{2n}(z)=\frac{1}{2 }(\kappa _1^2+\kappa _2^2)+{\mathcal {O}}\Big (\frac{1}{|n|}\Big ), \end{aligned}$$

which completes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yuan, X. An adaptive finite element DtN method for the elastic wave scattering problem. Numer. Math. 150, 993–1033 (2022). https://doi.org/10.1007/s00211-022-01273-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01273-4

Mathematics Subject Classification

Navigation