We assume the bounded domain \(\Omega \in {{\mathbb {R}}}^d\) to be Lipschitz and, in view of the duality method used in the proof of Theorem 14 below, convex. Recall that we suppose that \(d\le 3\).
The weak formulation of (4)–(5) reads as follows: find \(\lambda ^k\in H^1(\Omega )\cap L^\infty (\Omega )\) such that
$$\begin{aligned} \int _\Omega \left( e^{\lambda ^k}-e^{\lambda ^{k-1}}\right) \phi dx + \triangle t \int _\Omega e^{\lambda ^k}\nabla \lambda ^k\cdot \nabla \phi dx = \triangle t\int _\Omega e^{\lambda ^k}\left( 1-e^{\lambda ^k}\right) \phi dx \end{aligned}$$
for all \(\phi \in H^1(\Omega )\).
Our DG discretization of the above formulation reads as follows. Let \(\varepsilon \ge 0\) and \(\lambda _h^0\in V_h\). Given \(\lambda _h^{k-1}\in V_h\), we wish to find \(\lambda _h^k\in V_h\) such that for all \(\phi _h\in V_h\),
$$\begin{aligned} \int _\Omega \left( e^{\lambda _h^k}-e^{\lambda _h^{k-1}}\right) \phi _h dx + \triangle t B\left( \lambda _h^k;\lambda _h^k,\phi _h\right) + \varepsilon \int _\Omega \lambda _h^k\phi _h dx = \triangle t\int _\Omega e^{\lambda _h^k}\left( 1-e^{\lambda _h^k}\right) \phi _h dx. \end{aligned}$$
(8)
The form \(B:{V_h^3}\rightarrow {{\mathbb {R}}}\) represents the interior penalty DG discretization of the nonlinear diffusion term. It is linear in the second and third argument and is defined by
$$\begin{aligned} B(u;v,w)&= \sum _{K\in {\mathcal {T}}_h} \int _Ke^u\nabla v\cdot \nabla w dx - \sum _{f\in {\mathcal {E}}_h}\int _f\big (\{e^u\nabla v\}\cdot \llbracket w\rrbracket + \{e^u\nabla w\}\cdot \llbracket v\rrbracket \big )ds \nonumber \\&\quad + \sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\alpha (u)\llbracket v\rrbracket \cdot \llbracket w\rrbracket ds, \end{aligned}$$
(9)
where \(\alpha (u)\) is a stabilization function, given by
$$\begin{aligned} \alpha (u) = \frac{3}{2} C_{\mathrm{inv}}^2\big (\max \{(e^u)_-,(e^u)_+\}\big )^2 \max \big \{\exp (\Vert u\Vert _{L^\infty (K_-)}),\exp (\Vert u\Vert _{L^\infty (K_+)})\big \}. \end{aligned}$$
(10)
We recall that the constant \(C_{\mathrm{inv}}\) is defined in Lemma 1. The third term on the left-hand side of (8) is a regularization term (only) needed for the existence analysis to derive a uniform (but \(\varepsilon \)-depending) bound for the fixed-point argument. For linear elements \(p=1\), we may allow for \(\varepsilon =0\); see “Appendix A”.
Existence of a discrete solution
We show that problem (8) possesses a solution. First, we prove a coercivity property for the form B.
Lemma 5
(Coercivity of B) The form B, defined in (9), satisfies for all \(v\in {V_h^3}\),
$$\begin{aligned} B(v;v,v) \ge 2\sum _{K\in {\mathcal {T}}_h}\int _K|\nabla e^{v/2}|^2 dx + 2C_{\mathrm{inv}}^2\sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\left| \llbracket e^{v/2}\rrbracket \right| ^2 ds. \end{aligned}$$
Proof
Definition (9) gives for \(v\in {V_h^3}\):
$$\begin{aligned} B(v;v,v)\! =\! \sum _{K\in {\mathcal {T}}_h}\int _K e^v|\nabla v|^2 dx \!-\! 2\sum _{f\in {\mathcal {E}}_h}\int _f \{e^v\nabla v\}\cdot \llbracket v\rrbracket ds + \sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\alpha (v)|\llbracket v\rrbracket |^2 ds. \end{aligned}$$
(11)
We estimate the second integral by using Young’s inequality:
$$\begin{aligned} 2\sum _{f\in {\mathcal {E}}_h}\int _f \{e^v\nabla v\}\cdot \llbracket v\rrbracket ds \le \sum _{f\in {\mathcal {E}}_h}\bigg (\int _f\beta _f^2\{e^v\nabla v\}^2 ds + \int _f\frac{1}{\beta _f^2}|\llbracket v\rrbracket |^2 ds\bigg ), \end{aligned}$$
where \(\beta _f>0\) is a parameter which will be defined below. The first integral on the right-hand side is estimated according to
$$\begin{aligned} \sum _{f\in {\mathcal {E}}_h}\int _f\beta _f^2\{e^v\nabla v\}^2 ds&= \frac{1}{4}\sum _{f\in {\mathcal {E}}_h}\int _f\beta _f^2\big |(e^v\nabla v)_- + (e^v\nabla v)_+\big |^2 ds \\&\le \frac{1}{2}\sum _{f\in {\mathcal {E}}_h}\int _f\beta _f^2\big (|(e^v\nabla v)_-|^2 + |(e^v\nabla v)_+|^2\big )ds \\&= \frac{1}{2}\sum _{f\in {\mathcal {E}}_h}\int _f\beta _f^2\big (\max \{(e^v)_-,(e^v)_+\}\big )^2 \big (|(\nabla v)_-|^2 + |(\nabla v)_+|^2\big ) ds. \end{aligned}$$
To proceed, we set
$$\begin{aligned} \beta _f := \frac{\min \{\gamma _{K_-},\gamma _{K_+}\}}{\max \{(e^v)_-,(e^v)_+\}}, \quad \text{ where } \gamma _{K}^2:=\frac{h_{K}}{C_{\mathrm{inv}}^2p^2} \exp (-\Vert v\Vert _{L^\infty (K)}). \end{aligned}$$
Taking into account the inverse trace inequality (6), we infer that
$$\begin{aligned} \sum _{f\in {\mathcal {E}}_h}\int _f\beta _f^2\{e^v\nabla v\}^2 ds&\le \frac{1}{2}\sum _{K\in {\mathcal {T}}_h}\int _{\partial K}\gamma _K^2|\nabla v|^2 ds \le \frac{1}{2} C_{\mathrm{inv}}^2\sum _{K\in {\mathcal {T}}_h}\gamma _K^2\frac{p^2}{h_K}\int _K|\nabla v|^2 dx \\&\le \frac{1}{2} C_{\mathrm{inv}}^2 p^2\sum _{K\in {\mathcal {T}}_h}\frac{\gamma _K^2}{h_K} \exp (\Vert v\Vert _{L^\infty (K)})\int _K e^v|\nabla v|^2 dx \\&= \frac{1}{2}\sum _{K\in {\mathcal {T}}_h}\int _K e^v|\nabla v|^2 dx. \end{aligned}$$
Consequently, we obtain
$$\begin{aligned} 2\sum _{f\in {\mathcal {E}}_h}\int _f \{e^v\nabla v\}\cdot \llbracket v\rrbracket ds \le \sum _{f\in {\mathcal {E}}_h}\int _f\frac{1}{\beta _f^2}|\llbracket v\rrbracket |^2 ds + \frac{1}{2}\sum _{K\in {\mathcal {T}}_h}\int _K e^v|\nabla v|^2 dx. \end{aligned}$$
Inserting this estimate into (11), it follows that
$$\begin{aligned} B(v;v,v) \ge \frac{1}{2}\sum _{K\in {\mathcal {T}}_h} {\int _K} e^v|\nabla v|^2 dx + \sum _{f\in {\mathcal {E}}_h}\int _f\bigg (\frac{p^2}{\mathtt{h}}\alpha (v) - \frac{1}{\beta _f^2}\bigg ) |\llbracket v\rrbracket |^2 ds. \end{aligned}$$
With the definitions of \(\alpha (v)\) (see (10)) and \(\beta _f\) as well as the property \(\mathtt{h}\le h_{K_\pm }\), the difference in the bracket can be computed as
$$\begin{aligned} \frac{p^2}{\mathtt{h}}\alpha (v) - \frac{1}{\beta _f^2}&\ge \frac{3}{2}\frac{p^2}{\mathtt{h}}C_{\mathrm{inv}}^2\big (\max \{(e^v)_-,(e^v)_+\}\big )^2 \max \big \{\exp (\Vert v\Vert _{L^\infty (K_-)}),\exp (\Vert v\Vert _{L^\infty (K_+)})\big \} \\&\quad - \frac{C_{\mathrm{inv}}^2p^2(\max \{(e^v)_-,(e^v)_+\})^2}{\min \{ h_{K_-}\exp (-\Vert v\Vert _{L^\infty (K_-)}),h_{K_+}\exp (-\Vert v\Vert _{L^\infty (K_+)})\}} \\&\ge \frac{p^2}{2\mathtt{h}}C_{\mathrm{inv}}^2(\max \{(e^v)_-,(e^v)_+\})^2 \max \big \{\exp (\Vert v\Vert _{L^\infty (K_-)}),\exp (\Vert v\Vert _{L^\infty (K_+)})\big \} \\&= \frac{1}{3}\frac{p^2}{\mathtt{h}}\alpha (v). \end{aligned}$$
This shows that
$$\begin{aligned} B(v;v,v) \ge 2\sum _{K\in {\mathcal {T}}_h}\int _K|\nabla e^{v/2}|^2 dx + \frac{1}{3}\sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\alpha (v)|\llbracket v\rrbracket |^2 ds. \end{aligned}$$
(12)
By the definition of the jumps and the mean-value theorem for \(x\in f\),
$$\begin{aligned} \left| \llbracket e^{v/2}\rrbracket \right| ^2 = \big |e^{v_-/2}-e^{v_+/2}\big |^2 \le \frac{1}{4}\max \{e^{v_-},e^{v_+}\}|\llbracket v\rrbracket |^2. \end{aligned}$$
We use Definition (10) and insert the previous estimate into (12):
$$\begin{aligned} B(v;v,v)&\ge 2\sum _{K\in {\mathcal {T}}_h}\int _K|\nabla e^{v/2}|^2 dx + 2C_{\mathrm{inv}}^2\sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\max \{(e^v)_-,(e^v)_+\} \\&\quad \times \max \big \{\exp (\Vert v\Vert _{L^\infty (K_-)}),\exp (\Vert v\Vert _{L^\infty (K_+)})\big \} \left| \llbracket e^{v/2}\rrbracket \right| ^2 ds. \end{aligned}$$
Since \((e^{v})_\pm \ge \exp (-\Vert v\Vert _{L^\infty (K_\pm )})\), we have
$$\begin{aligned} \max \{(e^v)_-,(e^v)_+\} \max \big \{\exp (\Vert v\Vert _{L^\infty (K_-)}),\exp (\Vert v\Vert _{L^\infty (K_+)})\big \} \ge 1. \end{aligned}$$
This finishes the proof. \(\square \)
Proposition 6
(Existence) Let \(\varepsilon >0\). Given \(\lambda _h^{k-1}\in V_h\), the DG scheme (8) admits a solution \(\lambda _h^k\in V_h\).
Proof
The idea is to apply the Leray–Schauder fixed-point theorem. We define the fixed-point operator \(\Phi :V_h\times [0,1]\rightarrow V_h\) by \(\Phi (w,\sigma ) = v\), where \(v\in V_h\) is the unique solution to the linear problem
$$\begin{aligned} \varepsilon \int _\Omega v\phi dx = \sigma \int _\Omega \left( e^{\lambda _h^{k-1}} - e^w + \triangle t e^w(1-e^w)\right) \phi dx - \sigma \triangle t B(w;w,\phi ) \end{aligned}$$
(13)
for \(\phi \in V_h\). The left-hand side defines the bilinear form \(a(w,\phi )\), which is coercive, \(a(w,w)=\varepsilon \Vert w\Vert _{L^2(\Omega )}^2\). The right-hand side defines a linear form which is continuous on \(L^2(\Omega )\) (using the fact that in finite dimensions, all norms are equivalent). Thus, \(\Phi \) is well defined by the Lax–Milgram lemma. As the right-hand side of (13) is continuous with respect to w, standard arguments show that \(\Phi \) is continuous. Furthermore, \(\Phi (w,0)=0\). It remains to prove that there exists a uniform bound for all fixed points of \(\Phi \). To this end, let \(v\in V_h\) and \(\sigma \in [0,1]\) such that \(\Phi (v,\sigma )=v\).
Let \({ s(x):=x(\log x-1)+1}\ge 0\). The convexity of s implies that
$$\begin{aligned} \left( e^{\lambda _h^{k-1}}-e^v\right) v = \left( e^{\lambda _h^{k-1}}-e^v\right) s'(e^v) \le s\left( e^{\lambda _h^{k-1}}\right) - s(e^v). \end{aligned}$$
(14)
Then, using the test function \(\phi =v\) in (13) gives, because of the properties \(B(v;v,v)\ge 0\) (Lemma 5) and \(e^v(1-e^v)v\le 0\),
$$\begin{aligned} \varepsilon \Vert v\Vert _{L^2(\Omega )}^2&= \sigma \int _\Omega \left( e^{\lambda _h^{k-1}}-e^v\right) v dx + \sigma \triangle t\int _\Omega e^v(1-e^v)v dx - \sigma \triangle t B(v;v,v) \nonumber \\&\le \sigma \int _\Omega \left( s\left( e^{\lambda _h^{k-1}}\right) - s(e^v)\right) dx \le \sigma \int _\Omega s\left( e^{\lambda _h^{k-1}}\right) dx. \end{aligned}$$
(15)
This is the desired uniform bound. We infer the existence of a solution to (8) by the Leray–Schauder fixed-point theorem. \(\square \)
Discrete entropy inequality and exponential decay
Let \(\lambda _h^k\in V_h\) be a solution to (8). We show that the entropy
$$\begin{aligned} S_h^k := \int _\Omega s\left( e^{\lambda _h^k}\right) dx, \quad \text{ where } s(u) = u(\log u-1)+1, \end{aligned}$$
is nonincreasing with respect to \(k\in {{\mathbb {N}}}\).
Lemma 7
(Discrete entropy inequality) Let \(\varepsilon \ge 0\) and let \(\lambda _h^k\in V_h\) be a solution to (8). Then
$$\begin{aligned} S_h^k + C_0\triangle t\int _\Omega \bigg |e^{\lambda _h^k/2}-\frac{1}{|\Omega |} \int _\Omega e^{\lambda _h^k/2}dy\bigg |^2 dx + \triangle t\int _\Omega e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k dx \le S_h^{k-1}, \end{aligned}$$
(16)
where the constant \(C_0>0\) only depends on \(C_{\mathrm{inv}}\) and \(C_{\mathrm{PW}}\) from Lemmas 1 and 3.
Proof
We take \(\phi _h=\lambda _h^k\) as a test function in (8) and use inequality (14) to find that
$$\begin{aligned} S_h^k - S_h^{k-1}&= \int _\Omega \left( s\left( e^{\lambda _h^k}\right) -s\left( e^{\lambda _h^{k-1}}\right) \right) dx \nonumber \\&= -\triangle t B\left( \lambda _h^k;\lambda _h^k,\lambda _h^k\right) - \varepsilon \int _\Omega \left( \lambda _h^k\right) ^2 dx - \triangle t\int _\Omega e^{\lambda _h^k} \left( e^{\lambda _h^k}-1\right) dx \nonumber \\&\le -\triangle t B\left( \lambda _h^k;\lambda _h^k,\lambda _h^k\right) - \triangle t\int _\Omega e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k \lambda _h^kdx. \end{aligned}$$
(17)
It remains to estimate the first term on the right-hand side. For this, we use the coercivity estimate of Lemma 5 and the discrete Poincaré–Wirtinger inequality from Lemma 3:
$$\begin{aligned} B\left( \lambda _h^k;\lambda _h^k,\lambda _h^k\right)&\ge 2\min \left\{ 1,C_{\mathrm{inv}}^2\right\} \left( \sum _{K\in {\mathcal {T}}_h}\int _K\left| \nabla e^{\lambda _h^k/2}\right| ^2 dx + \sum _{f\in {\mathcal {E}}_h}\int _f\frac{p^2}{\mathtt{h}}\left| \llbracket e^{\lambda _h^k/2}\rrbracket \right| ^2 ds\right) \\&\ge 2\min \left\{ 1,C_{\mathrm{inv}}^2\right\} C_{\mathrm{PW}}^{-2} \int _\Omega \bigg |e^{\lambda _h^k/2}-\frac{1}{|\Omega |} \int _\Omega e^{\lambda _h^k/2}dx\bigg |^2 dx. \end{aligned}$$
Setting \(C_0=2\min \{1,C_{\mathrm{inv}}^2\}C_{\mathrm{PW}}^{-2}\) finishes the proof. \(\square \)
We wish to bound the total mass \(\int _\Omega \exp (\lambda _h^k)dx\) from below and above. Since \(s(u)=u(\log u-1)+1\) is invertible only on [0, 1] and on \([1,\infty )\) but not globally on \([0,\infty )\), we introduce the following functions:
$$\begin{aligned}&\sigma _-:[0,\infty )\rightarrow [0,1], \quad \sigma _-(v)\!=\!(s|_{[0,1]})^{-1}(v) \text{ for } v\in [0,1], \ \sigma _-(v)\!=\!0 \text{ for } v\in [1,\infty ), \\&\sigma _+:[0,\infty )\rightarrow [1,\infty ), \quad \sigma _+(v)=(s|_{[1,\infty )})^{-1}(v) \text{ for } v\in [0,\infty ). \end{aligned}$$
In particular, \(\sigma _-\circ s=\text{ id }\) on [0, 1] and \(\sigma _+\circ s=\text{ id }\) on \([1,\infty )\).
Lemma 8
(Bounds for the total mass) Let \(\varepsilon \ge 0\) and let \(\lambda _h^k\) be a solution to (8). Then
$$\begin{aligned} \sigma _-\bigg (\frac{S_h^0}{|\Omega |}\bigg ) \le \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k}dx \le \sigma _+\bigg (\frac{S_h^0}{|\Omega |}\bigg ). \end{aligned}$$
Observe that if \(S_h^0<|\Omega |\), the lower bound \(\sigma _-(S_h^0/|\Omega |)\) is positive. Thus, the total mass can never vanish, which excludes the case of solutions converging for \(k\rightarrow \infty \) to the zero solution. The reason for the difference between \(S_h^0<|\Omega |\) and \(S_h^0\ge |\Omega |\) lies in the fact that (4)–(5) admits two steady states, \(\lambda ^k_h=0\) (corresponding to \(u^k=e^{\lambda ^k_h}=1\)) and \(\lambda ^k_h=-\infty \) (corresponding to \(u^k=0\)). The assumption \(S_h^0<|\Omega |\) will be crucial to prove the decay estimate for the entropy; see Proposition 9. We discuss the case \(S_h^0\ge |\Omega |\) in Remark 12.
Proof of Lemma 8
First, we show the lower bound. If \(S_h^0\ge |\Omega |\), we have \(\sigma _-(S_h^0/|\Omega |)=0\), and there is nothing to prove. Thus, let \(S_h^0<|\Omega |\). Set \(\beta _k=\min \{1,\exp (\lambda _h^k)\}\le 1\). As s is convex, we infer from Jensen’s inequality and \(s(\beta _k)=0\) for \(\lambda _h^k>0\) that
$$\begin{aligned} s\bigg (\frac{1}{|\Omega |}\int _\Omega \beta _k dx\bigg ) \le \frac{1}{|\Omega |}\int _\Omega s(\beta _k)dx = \frac{1}{|\Omega |}\int _{\left\{ \lambda _h^k\le 0\right\} }s\left( e^{\lambda _h^k}\right) dx \le \frac{S_h^k}{|\Omega |} \le \frac{S_h^0}{|\Omega |}, \end{aligned}$$
where in the last step we have used the monotonicity of \(k\mapsto S_h^k\). With this preparation, we are able to verify the lower bound. As \(\sigma _-\) is decreasing, we find that
$$\begin{aligned} \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k}dx \ge \frac{1}{|\Omega |}\int _\Omega \beta _k dx = (\sigma _-\circ s)\bigg (\frac{1}{|\Omega |}\int _\Omega \beta _k dx\bigg ) \ge \sigma _-\bigg (\frac{S_h^0}{|\Omega |}\bigg ). \end{aligned}$$
For the upper bound, we can assume that \(\int _\Omega \exp (\lambda _h^k)dx\ge |\Omega |\), since otherwise, the inequality is trivially satisfied in view of \(\sigma _+(v)\ge 1\). By the concavity of \(\sigma _+\), we can again apply the Jensen inequality:
$$\begin{aligned} \sigma _+\bigg (\frac{S^0_h}{|\Omega |}\bigg ) \ge \sigma _+\bigg (\frac{1}{|\Omega |}\int _\Omega s\left( e^{\lambda _h^k}\right) dx\bigg ) \ge \frac{1}{|\Omega |}\int _\Omega (\sigma _+\circ s)\left( e^{\lambda _h^k}\right) dx = \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k} dx, \end{aligned}$$
proving the claim. \(\square \)
Proposition 9
(Discrete entropy decay) Let \(\varepsilon \ge 0\) and let \(\lambda _h^k\) be a solution to (8). We assume that \(S_h^0<|\Omega |\). Then there exists a constant \(C_1>0\), only depending on \(S_h^0\), such that for all \(k\in {{\mathbb {N}}}\),
$$\begin{aligned} S_h^k \le (1+C_1\triangle t)^{-k}S_h^0. \end{aligned}$$
(18)
In particular, with \(\eta = \log (1+C_1\triangle t)/(C_1\triangle t)<1\), we have the exponential decay
$$\begin{aligned} S_h^k \le S_h^0 e^{-\eta C_1 k\triangle t}, \quad k\in {{\mathbb {N}}}. \end{aligned}$$
The proof is based on two properties: The diffusion drives the solution towards a constant, while the reaction term guarantees that there is only one (positive) steady state. In order to cope with the interplay of diffusion and reaction, we prove first the following lemma.
Lemma 10
Introduce for \(\theta >0\) the functions
$$\begin{aligned} M_1(\theta ) = \frac{s(\theta )}{\theta (\theta -1)\log \theta }, \quad M_2(\theta ) = \max \{1,s(\theta )\}. \end{aligned}$$
Then
$$\begin{aligned} s(e^v) \le \left\{ \begin{array}{ll} M_1(\theta )e ^v(e^v-1)v &{}\quad \text{ if } \,v\ge \log \theta , \\ M_2(\theta ) &{}\quad \text{ if } \,v<\log \theta . \end{array}\right. \end{aligned}$$
Proof
The function
$$\begin{aligned} g(v) = \frac{s(e^v)}{e^v(e^v-1)v} = \frac{e^v(v-1)+1}{e^v(e^v-1)v}, \quad v\ne 0, \end{aligned}$$
can be continuously extended to \(v=0\) (with value \(g(0)=1/2\)) and it is decreasing with limits \(\lim _{v\rightarrow \infty }g(v)=0\) and \(\lim _{v\rightarrow -\infty }g(v)=+\infty \). Therefore, \(g(v)\le g(\log \theta ) = M_1(\theta )\) for all \(v\ge \log \theta \), showing the first inequality. For the second one, let \(v\le \log \theta \). Then \(s(e^v)<1\) for \(v\le 0\) and the monotonicity of \(v\mapsto s(e^v)\) for \(v\ge 0\) implies that \(s(e^v)\le s(\theta )\). Thus, for any \(v\in {{\mathbb {R}}}\), \(s(e^v)\le \max \{1,s(\theta )\}=M_2(\theta )\), completing the proof. \(\square \)
Proof of Proposition 9
The idea of the proof is to split \(S^k_h\) into two integrals,
$$\begin{aligned} S_h^k = \int _{\left\{ \lambda _h^k\le \log \alpha \right\} }s\left( e^{\lambda _h^k}\right) dx + \int _{\left\{ \lambda _h^k>\log \alpha \right\} }s\left( e^{\lambda _h^k}\right) dx, \end{aligned}$$
(19)
for some suitably chosen \(\alpha >0\) and to estimate these integrals by the second and third terms on the left-hand side of the discrete entropy inequality (16).
Since \(S_h^0/|\Omega |<1\), there exists \(\theta \in (0,1)\) such that \(s(\theta )>S_h^0/|\Omega |\). Let \(0<\varepsilon _0<[1-S_h^0/(|\Omega |s(\theta ))]^2\) and set \(\alpha =\varepsilon _0\theta \in (0,1)\).
We turn to the first integral on the right-hand side of (19). We claim that there exists a constant \(C_{\varepsilon _0 \theta }>0\) such that
$$\begin{aligned} \int _{\left\{ \lambda _h^k\le \log \alpha \right\} }s\left( e^{\lambda _h^k}\right) dx \le C_{\varepsilon _0 \theta }\int _\Omega \int _\Omega \bigg |e^{\lambda _h^k/2} - \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2} dy\bigg |^2 dx. \end{aligned}$$
(20)
To prove this inequality, we begin by showing that \(\int _\Omega \exp (\lambda _h^k/2)dx\) is bounded from below. Indeed, using the monotonicity of \(s\circ \exp \) in [0, 1] and of \(k\mapsto S^k\),
$$\begin{aligned}&\left| \left\{ \lambda _h^k\le \log \theta \right\} \right| = \left| \left\{ s\left( e^{\lambda _h^k}\right) \ge s(\theta )\right\} \right| = \frac{1}{s(\theta )}\int _{\left\{ s\left( \exp \left( \lambda _h^k\right) \right) \ge s(\theta )\right\} }s(\theta )dx \\&\quad \le \frac{1}{s(\theta )}\int _{\left\{ s\left( \exp \left( \lambda _h^k\right) \right) \ge s(\theta )\right\} } s\left( e^{\lambda _h^k}\right) dx \le \frac{1}{s(\theta )}\int _\Omega s\left( e^{\lambda _h^k}\right) dx = \frac{S^k_h}{s(\theta )} \le \frac{S^0_h}{s(\theta )}. \end{aligned}$$
This yields the lower bound
$$\begin{aligned} \int _\Omega e^{\lambda _h^k/2}dx&\ge \int _{\left\{ \lambda _h^k>\log \theta \right\} }e^{\lambda _h^k/2}dx> \sqrt{\theta }\left| \left\{ \lambda _h^k>\log \theta \right\} \right| \\&= \sqrt{\theta }\left( |\Omega | - \left| \left\{ \lambda _h^k\le \log \theta \right\} \right| \right) \ge \sqrt{\theta }\bigg (|\Omega | - \frac{S_h^0}{s(\theta )}\bigg ). \end{aligned}$$
Therefore, as long as \(\lambda _h^k\le \log (\varepsilon _0 \theta )\), the difference
$$\begin{aligned} \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx - e^{\lambda _h^k/2} \!\ge \!\frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx - \sqrt{\varepsilon _0 \theta } \!\ge \!\sqrt{\theta }\bigg (1 - \frac{S_h^0}{|\Omega |s(\theta )} - \sqrt{\varepsilon _0 }\bigg ) > 0 \end{aligned}$$
is positive. Squaring this expression and integrating over \(\{\lambda _h^k\le \log (\varepsilon _0 \theta )\}\) thus does not change the inequality sign:
$$\begin{aligned}&\int _{\left\{ \lambda _h^k\le \log (\varepsilon _0 \theta )\right\} } \bigg |e^{\lambda _h^k/2} - \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx\bigg |^2 dx \ge \int _{\left\{ \lambda _h^k\le \log (\varepsilon _0 \theta )\right\} }\theta \bigg (1 - \frac{S_h^0}{|\Omega |s(\theta )} - \sqrt{\varepsilon _0 }\bigg )^2 dx \\&\quad = \left| \left\{ \lambda _h^k\le \log (\varepsilon _0 \theta )\right\} \right| \theta \bigg (1 - \frac{S_h^0}{|\Omega |s(\theta )} - \sqrt{\varepsilon _0 }\bigg )^2. \end{aligned}$$
Combining the estimate of Lemma 10 and the previous estimate, we arrive at
$$\begin{aligned}&\int _{\left\{ \lambda _h^k\le \log (\varepsilon _0 \theta )\right\} }s\left( e^{\lambda _h^k}\right) dx \le M_2(\varepsilon _0 \theta )\left| \left\{ \lambda _h^k\le \log (\varepsilon _0 \theta )\right\} \right| \\&\quad \le \frac{M_2(\varepsilon _0 \theta )}{\left( 1-S_h^0/(|\Omega |s(\theta )) - \sqrt{\varepsilon _0 }\right) \theta } \int _\Omega \bigg |e^{\lambda _h^k/2} - \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx\bigg |^2 dx. \end{aligned}$$
This proves claim (20) with
$$\begin{aligned} C_{\varepsilon _0 \theta } = \frac{M_2(\varepsilon _0 \theta )}{\left( 1-S_h^0/(|\Omega |s(\theta )) - \sqrt{\varepsilon _0 }\right) \theta }, \end{aligned}$$
recalling that \(\alpha =\varepsilon _0 \theta \).
Next, we estimate the second integral on the right-hand side of (19). It follows from Lemma 10 that
$$\begin{aligned} \int _{\left\{ \lambda _h^k > \log (\varepsilon _0 \theta )\right\} }s\left( e^{\lambda _h^k}\right) dx \le M_1(\varepsilon _0 \theta )\int _\Omega e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k dx. \end{aligned}$$
Therefore, (19) gives
$$\begin{aligned} S_h^k&\le C_{\varepsilon _0 \theta }\int _\Omega \bigg |e^{\lambda _h^k/2} - \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx\bigg |^2 dx + M_1(\varepsilon _0 \theta )\int _\Omega e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k dx \\&\le \frac{1}{C_1}\bigg (C_0\int _\Omega \bigg |e^{\lambda _h^k/2} - \frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k/2}dx\bigg |^2 dx + \int _\Omega e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k dx\bigg ) \end{aligned}$$
for \(C_1 = 1/\max \{C_{\varepsilon _0 \theta }/C_0,M_1(\varepsilon _0 \theta )\}\). Finally, by Lemma 7,
$$\begin{aligned} S_h^k \le \frac{1}{C_1\triangle t}\left( S_h^{k-1}-S_h^{k}\right) , \end{aligned}$$
and solving this recursion shows the proposition. \(\square \)
Theorem 11
(Decay in the \(L^1(\Omega )\) norm) Let the assumptions of Proposition 9 hold. Then there exists a constant \(C_2>0\), only depending on \(S_h^0\) and \(|\Omega |\), such that
$$\begin{aligned} \left\| e^{\lambda _h^k}-1\right\| _{L^1(\Omega )} \le C_2e^{-\eta C_1 k\triangle t/2}, \quad k\in {{\mathbb {N}}}, \end{aligned}$$
where \(\eta \in (0,1)\) and \(C_1>0\) are as in Proposition 9.
Proof
To simplify the notation, we set \(u=e^{\lambda ^k_h}\) and \({\bar{u}}=|\Omega |^{-1}\int _\Omega e^{\lambda _h^k}dx\). Then the Csiszár–Kullback inequality (see, e.g.,
[4, (2.8)]) gives
$$\begin{aligned} \Vert u-{\bar{u}}\Vert _{L^1(\Omega )}^2 \le \frac{2}{|\Omega |}\int _\Omega s\bigg (\frac{u}{{\bar{u}}}\bigg ){\bar{u}} dx = \frac{2{\bar{u}}}{|\Omega |}\int _\Omega \big (s(u)-s({\bar{u}})\big )dx \le \frac{2{\bar{u}}}{|\Omega |}\int _\Omega s(u)dx, \end{aligned}$$
using the property \(s(u)\ge 0\) for all \(u\ge 0\). We know from Lemma 8 that \({\bar{u}}\) is bounded from above by \(\sigma _+(S_h^0/|\Omega |)\). Hence,
$$\begin{aligned} \Vert u-{\bar{u}}\Vert _{L^1(\Omega )}^2 \le \frac{2}{|\Omega |} \sigma _+\bigg (\frac{S_h^0}{|\Omega |}\bigg )S_h^k. \end{aligned}$$
(21)
It remains to show that a similar estimate holds for \(|{\bar{u}}-1|\). Since the entropy density s is convex, Jensen’s inequality shows that
$$\begin{aligned} s({\bar{u}}) = s\bigg (\frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^k}dx\bigg ) \le \frac{1}{|\Omega |}\int _\Omega s\left( e^{\lambda _h^k}\right) dx = \frac{S_h^k}{|\Omega |} \le \frac{S_h^0}{|\Omega |} < 1. \end{aligned}$$
(22)
It holds \(s(v)<1\) if and only if \(v<e\). Consequently, we have \({\bar{u}}<e\). Applying the elementary inequality
$$\begin{aligned} s(u) \ge \frac{(u-1)^2}{(e-1)^2}\quad \text{ for } \text{ all } 0\le u\le e \end{aligned}$$
to \(u={\bar{u}}\) and using (22) gives
$$\begin{aligned} |{\bar{u}}-1|^2 \le (e-1)^2s({\bar{u}})\le \frac{(e-1)^2}{|\Omega |}S_h^k. \end{aligned}$$
Thus, combining (21) and the previous inequality, we conclude that
$$\begin{aligned} \left\| e^{\lambda _h^k}-1\right\| _{L^1(\Omega )}&\le \Vert u-{\bar{u}}\Vert _{L^1(\Omega )} + \Vert {\bar{u}}-1\Vert _{L^1(\Omega )} \\&\le \bigg \{\bigg (\frac{2}{|\Omega |}\sigma _+\bigg (\frac{S_h^0}{|\Omega |}\bigg ) \bigg )^{1/2} + (e-1)|\Omega |^{1/2}\bigg \}\left( S_h^k\right) ^{1/2}, \end{aligned}$$
and the proof follows after applying Proposition 9. \(\square \)
Remark 12
We discuss the case \(S_h^0\ge |\Omega |\). Fix \(\triangle t\in (0,1)\) and \(L\in {{\mathbb {N}}}\) with \(L>1\). Define \(\lambda _h^k = (L-k)^+\log (1-\triangle t)\), where \(z^+=\max \{0,z\}\) denotes the positive part of \(z\in {{\mathbb {R}}}\). Then \(e^{\lambda _h^k}=(1-\triangle t)^{L-k}<1\) for \(k<L\) and \(e^{\lambda _h^k}=1\) for \(k\ge L\). Consider the case \(L>k=1\). Then, setting \(\delta :=(1-\triangle t)^{L-k}\), we estimate
$$\begin{aligned} \frac{1}{\triangle t}&S_h^1 + C_0\int _\Omega \bigg |e^{\lambda _h^1/2}-\frac{1}{|\Omega |}\int _\Omega e^{\lambda _h^1/2}dx\bigg |^2 dx + \int _\Omega e^{\lambda ^1}\left( e^{\lambda ^1}-1\right) \lambda _h^1 dx \\&= \bigg (\frac{s(\delta )}{\triangle t} + \delta (\delta -1)\log \delta \bigg )|\Omega | \le (1 + (1-\triangle t)\delta \log \delta )\frac{|\Omega |}{\triangle t} \le \frac{|\Omega |}{\triangle t} \le \frac{S_h^0}{\triangle t}. \end{aligned}$$
If \(1<k\le L\), we deduce from \(e^{\lambda _h^k}\le 1\) that
$$\begin{aligned} \frac{1}{\triangle t}\left( e^{\lambda _h^k}-e^{\lambda _h^{k-1}}\right)&= \frac{1}{\triangle t}\big ((1-\triangle t)^{L-k} - (1-\triangle t)^{L-k+1}\big ) = (1-\triangle t)^{L-k} \nonumber \\&= e^{\lambda _h^k} \ge -e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) . \end{aligned}$$
(23)
By the convexity of s, it follows that \(s(u)-s(v)\le (u-v)s'(u) = (u-v)\log u\) for all u, \(v>0\). Since \(\lambda _h^k\le 0\) for \(k\le L\), (23) yields
$$\begin{aligned} s\left( e^{\lambda _h^k}\right) \le \left( e^{\lambda _h^k}-e^{\lambda _h^{k-1}}\right) \lambda _h^k + s\left( e^{\lambda _h^{k-1}}\right) \le -\triangle t e^{\lambda _h^k}\left( e^{\lambda _h^k}-1\right) \lambda _h^k + s\left( e^{\lambda _h^{k-1}}\right) , \end{aligned}$$
which directly implies the entropy inequality (16). This inequality is trivially satisfied for \(k\ge L\). However, it holds for \(L=2k\) that
$$\begin{aligned} e^{\lambda _h^k} = (1-\triangle t)^k\rightarrow 0, \quad S_h^k = \int _\Omega s\left( e^{\lambda _h^k}\right) dx\rightarrow |\Omega |\quad \text{ as } k\rightarrow \infty . \end{aligned}$$
This means that if \(S_h^0\ge |\Omega |\), there exists no constant \(C>0\) depending only on \(S_h^0\) such that (18) holds for all \((\lambda _h^k)\subset L^2(\Omega )\) satisfying the entropy inequality (16). Note that the constructed function \(e^{\lambda _h^k}\) does not possess a uniform positive lower bound. \(\square \)