Skip to main content
Log in

Provably convergent implementations of the subdivision algorithm for the computation of invariant objects

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The subdivision algorithm by Dellnitz and Hohmann for the computation of invariant sets of dynamical systems decomposes the relevant region of the state space into boxes and analyzes the induced box dynamics. Its convergence is proved in an idealized setting, assuming that the exact time evolution of these boxes can be computed. In the present article, we show that slightly modified, directly implementable versions of the original algorithm are convergent under very mild assumptions on the dynamical system. In particular, we demonstrate that neither a fine net of sample points nor very accurate approximations of the precise dynamics are necessary to guarantee convergence of the overall scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential inclusions. In: Grundlehren der Mathematischen Wissenschaften, vol. 264, Springer, Berlin (1984)

  2. Aulbach, B., Rasmussen, M., Siegmund, S.: Approximation of attractors of nonautonomous dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 5(2), 215–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheriyan, V., Kleywegt, A.: A dynamical systems model of price bubbles and cycles. Quant. Finance 16(2), 309–336 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75(3), 293–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dellnitz, M., Junge, O., Post, M., Thiere, B.: On target for Venus—set oriented computation of energy efficient low thrust trajectories. Celest. Mech. Dyn. Astron. 95(1), 357–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dellnitz, M., Klus, S., Ziessler, A.: A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM J. Appl. Dyn. Syst. 16(1), 120–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuflhard, P., Dellnitz, M., Junge, O., Schütte, C.: Computation of essential molecular dynamics by subdivision techniques. Comput. Mol. Dyn. 4, 98–115 (1998)

    MATH  Google Scholar 

  10. Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D 238(16), 1507–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization. Syst. Control Lett. 54(2), 169–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Junge, O.: Rigorous discretization of subdivision techniques. In: International Conference on Differential Equations, vol. 2, World Sci. Publ., River Edge, pp. 916–918 (2000)

  13. Marsden, J.E., Ross, S.D.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. (N.S.) 43(1), 43–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mischaikow, K.: Topological techniques for efficient rigorous computation in dynamics. Acta Numer. 11, 435–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pötzsche, C., Rasmussen, M.: Computation of nonautonomous invariant and inertial manifolds. Numer. Math. 112(3), 449–483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sertl, S., Dellnitz, M.: Global optimization using a dynamical systems approach. J. Glob. Optim. 34(4), 569–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janosch Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieger, J. Provably convergent implementations of the subdivision algorithm for the computation of invariant objects. Numer. Math. 142, 149–165 (2019). https://doi.org/10.1007/s00211-018-0997-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0997-8

Mathematics Subject Classification

Navigation