Skip to main content

Advertisement

Log in

On target for Venus – set oriented computation of energy efficient low thrust trajectories

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Recently new techniques for the design of energy efficient trajectories for space missions have been proposed that are based on the circular restricted three body problem as the underlying mathematical model. These techniques exploit the structure and geometry of certain invariant sets and associated invariant manifolds in phase space to systematically construct energy efficient flight paths. In this paper, we extend this model in order to account for a continuously applied control force on the spacecraft as realized by certain low thrust propulsion systems. We show how the techniques for the trajectory design can be suitably augmented and compute approximations to trajectories for a mission to Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham R., Marsden J. (1978) Foundations of mechanics, 2nd edn Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Colonius, F., Kliemann, W. The dynamics of control. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA. With an appendix by Lars Grüne.

  • Dellnitz, M., Hohmann, A. The computation of unstable manifolds using subdivision and continuation. In: Broer, H., van Gils, S., Hoveijn, I., Takens, F. (ed.) Nonlinear dynamical systems and chaos, pp. 449–459, Birkhäuser, PNLDE 19, (1996)

  • Dellnitz M., Hohmann A. (1997) A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik 75, 293–317

    Article  MATH  MathSciNet  Google Scholar 

  • Dellnitz M., Junge O. (1999) On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2): 491–515

    Article  MathSciNet  Google Scholar 

  • Dellnitz M., Junge O., Thiere B. (2001) The numerical detection of connecting orbits. Discrete Contin. Dyn. Syst. Ser. B 1(1): 125–135

    Article  MATH  MathSciNet  Google Scholar 

  • Deuflhard P., Bornemann F. (2002) Scientific computing with ordinary differential equations, Texts in Applied Mathematics, Vol. 42. Springer-Verlag, New York

    MATH  Google Scholar 

  • Deuflhard P., Pesch H.-J., Rentrop P. (1976) A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques. Numer. Math. 26(3): 327–343

    Article  MATH  MathSciNet  Google Scholar 

  • ESA Venus Express mission definition report. European Space Agency ESA-SCI, 6 (2001)

  • Fabrega, J., Schirmann, T., Schmidt, R., McCoy, D. Venus Express: the first european mission to Venus. Int. Astronautical Congress, IAC-03-Q.2.06, 1–11 (2003)

  • Gerthsen C., Vogel H. (1993) Physik. Springer, Berlin

    MATH  Google Scholar 

  • Gómez G., Jorba À., Simó C., Masdemont J. (2001) Dynamics and mission design near libration points. Vol. III, World Scientific Monograph Series in Mathematics, Vol. 4 World Scientific Publishing Co. Inc., River Edge, NJ

    Google Scholar 

  • Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I. Non-stiff problems. Series in Computational Mathematics, Vol.8, 2nd edn. Springer-Verlag, Berlin, (1993).

  • Koon W., Lo M., Marsden J., Ross S. (2000a) Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Koon, W., Lo, M., Marsden J., Ross, S. Shoot the moon. In: AAS/AIAA Astrodynamics specialist conference, Florida, 105, 1017–1030 (2000b)

  • Koon W., Lo M., Marsden J., Ross S. (2002) Constructing a low energy transfer between jovian moons. Contemp. Math. 292, 129–145

    MATH  MathSciNet  Google Scholar 

  • Lo M., Williams B., Bollman W., Han D., Hahn Y., Bell J., Hirst E., Corwin R., Hong P., Howell K., Barden B., Wilson R. (2001) Genesis mission design. J. Astronautical Sci. 49, 169–184

    Google Scholar 

  • McGehee R. Some homoclinic orbits for the restricted 3-body problem. PhD thesis, University of Wisconsin, (1969)

  • Meyer K., Hall R. (1992) Hamiltonian mechanics and the n-body problem. Applied Mathematical Sciences, Springer-Verlag, Berlin

    Google Scholar 

  • Stoer J., Bulirsch R. (2002) Introduction to numerical analysis, Vol. 12. Springer-Verlag, New York

    MATH  Google Scholar 

  • Szebehely V. (1967) Theory of orbits—the restricted problem of three bodies. Academic Press, New York

    Google Scholar 

  • von Stryk, O. Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R., Miele, A., Stoer, J., Well, K.-H. (ed.) Optimal control—calculus of variations, optimal control theory and numerical methods, Internat. Ser. Numer. Math., pp. Vol. 111, 129–143. Birkhäuser, Basel (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Post.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellnitz, M., Junge, O., Post, M. et al. On target for Venus – set oriented computation of energy efficient low thrust trajectories. Celestial Mech Dyn Astr 95, 357–370 (2006). https://doi.org/10.1007/s10569-006-9008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9008-y

Keywords

Navigation