Skip to main content
Log in

A low-order discontinuous Petrov–Galerkin method for the Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper introduces a low-order discontinuous Petrov-Galerkin (dPG) finite element method (FEM) for the Stokes equations. The ultra-weak formulation utilizes piecewise constant and affine ansatz functions and piecewise affine and discontinuous lowest-order Raviart–Thomas test search functions. This low-order discretization for the Stokes equations allows for a direct proof of the discrete inf-sup condition with explicit constants. The general framework of Carstensen et al. (SIAM J Numer Anal 52(3):1335–1353, 2014) then implies a complete a priori and a posteriori error analysis of the dPG FEM in the natural norms. Numerical experiments investigate the performance of the method and underline its quasi-optimal convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberty, J., Carstensen, C., Funken, S.: Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algor. 20(2–3), 117–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H.W.: Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung, 5. Auflg (2006)

  3. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

  5. Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99(1), 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Bringmann, P., Carstensen, C.: An adaptive least-squares FEM for the Stokes equations with optimal convergence rates. Numer. Math. 135(2), 459–492 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Tong, C., Vassilevski, P.S., Wang, C.: Mixed finite element methods for incompressible flow: stationary Stokes equations. Numer. Methods Partial Differ. Equ. 26(4), 957–978 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Demkowicz, L., Gopalakrishnan, J.: A posteriori error control for DPG methods. SIAM J. Numer. Anal. 52(3), 1335–1353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Demkowicz, L., Gopalakrishnan, J.: Breaking spaces and forms for the DPG method and applications including Maxwell equations. Comput. Math. Appl. 72(3), 494–522 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126(1), 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carstensen, C., Gallistl, D., Hellwig, F., Weggler, L.: Low-order dPG-FEM for an elliptic PDE. Comput. Math. Appl. 68(11), 1503–1512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen, C., Hellwig, F.: Low-order discontinuous Petrov–Galerkin finite element methods for linear elasticity. SIAM J. Numer. Math. 54(6), 3388–3410 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for the Crouzeix-Raviart nonconforming finite element method for the Stokes problem. Comput. Methods Appl. Math. 14(1), 35–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen, C., Peterseim, D., Rabus, H.: Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math. 123(2), 291–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation. Comput. Methods Appl. Mech. Eng. 199(23), 1558–1572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Demkowicz, L., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson equation. SIAM J. Numer. Anal. 49(5), 1788–1809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. Part II. Optimal test functions. Numer. Methods Partial Differ. Equ. 27(1), 70–105 (2011)

    Article  MATH  Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Gopalakrishnan, J., Qiu, W.: An analysis of the practical DPG method. Math. Comput. 83(286), 537–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato, T.: Estimation of iterated matrices, with application to the von Neumann condition. Numer. Math. 2(1), 22–29 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Merdon, C.: Aspects of guaranteed error control in computations for partial differential equations. Ph.D. thesis, Humboldt-Universität zu Berlin (2013)

  25. Roberts, N.V., Bui-Thanh, T., Demkowicz, L.: The DPG method for the Stokes problem. Comput. Math. Appl. 67(4), 966–995 (2014). High-order Finite Element Approximation for Partial Differential Equations

    Article  MathSciNet  MATH  Google Scholar 

  26. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) in the Priority Program 1748 ‘Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis’ under the project CA 151/22-1. The second author is supported by the Berlin Mathematical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Carstensen.

Appendix: Fortin interpolation in an extended test search space

Appendix: Fortin interpolation in an extended test search space

Proof of Lemma 5.4

For \({\hat{Y}}_h:=({RT_0^\text {pw}(\mathcal {T};\mathbb {R}^{2})/\mathbb {R}\oplus \mathcal {B}_3(\mathcal {T})\mathbb {R}^{2\times 2}_{{{\mathrm{dev}}}}}) \times P_1(\mathcal {T};\mathbb {R}^{2})\) the Fortin interpolator \({\hat{\varPi }}: Y\rightarrow {\hat{Y}}_h\) maps \((\varvec{\tau },v)\mapsto (\hat{\varvec{\tau }}_{\text { RT}}, I_{\text { NC}}^\text {pw}v)\) such that (45)–(46) hold. Recall the edge-based Raviart–Thomas basis \(\psi _{E}\) for \(E\in \mathcal {E}(T)\), the opposite vertex \(P_E\in \mathcal {N}(T)\), and the component \(\kappa =1,\,2\), let \(\varPsi _{E,\kappa }:=e_\kappa \otimes \psi _E :=e_\kappa \otimes \chi (T)(x-P_E)|E|/(2|T|)\). The Crouzeix-Raviart basis functions in two components \(\varPhi _{E,\kappa }\) read \(\varPhi _{E,\kappa }:=\phi _{E}\ e_\kappa :=\chi (T)(1-2\varphi _{P_E})\ e_\kappa \) with nodal basis functions \(\varphi _{z}\) of \(z\in \mathcal {N}\). Given \(T\in \mathcal {T},\varvec{\tau }\in H({{\mathrm{div}}},T;\mathbb {R}^{2\times 2})\), define

$$\begin{aligned} I_F\varvec{\tau }:=\sum _{\kappa =1,\,2}\sum _{E\in \mathcal {E}(T)}\left( \frac{1}{|E|} \int _{\partial T} \varPhi _{E,\kappa }\cdot \varvec{\tau }\nu _T\,\mathrm{d}s\ \varPsi _{E,\kappa }\right) . \end{aligned}$$
(50)

Since \(\left( \psi _E\cdot \nu _T\right) |_F=\delta _{EF}\) and \(\int _F \phi _E \,\mathrm{d}s=\delta _{EF}|E|\) for \(E,F\in \mathcal {E}(T),I_F=I_F^2\) is a projection. Moreover, \(\left\langle I_F\varvec{\tau }\nu _T , \varPhi _{E,\kappa } \right\rangle _{\partial T}=\left\langle \varvec{\tau }\nu _T , \varPhi _{E,\kappa } \right\rangle _{\partial T}\) for any \(E\in \mathcal {E}(T)\) and \(\kappa =1,\,2\) implies (46). An integration by parts allows to rewrite \(I_F\varvec{\tau }\). The projection property implies \(I_F q=q\) for all \(q\in P_0(T)\). This and \(\sum _{E\in \mathcal {E}(T)} \varphi _E=1\) reveal

where . Given \(b_T:=60 \varphi _1\varphi _2\varphi _3\in B_3(T)\), for \(T\in \mathcal {T}\), set

$$\begin{aligned} \varPi _\tau \varvec{\tau }:= I_F\varvec{\tau }+ b_T {{\mathrm{dev}}}\varPi _0(\varvec{\tau }-I_F \varvec{\tau }) = I_F\varvec{\tau }- b_T {{\mathrm{dev}}}Q(T). \end{aligned}$$
(51)

Since \(b_T|_{\partial T}=0\) and , this operator \(\varPi _\tau \) satisfies (45)–(46). To compute \(\Vert \varPi _\tau \Vert _{}\) with

$$\begin{aligned}\Vert \varPi _\tau (\varvec{\tau }) \Vert _{H({{\mathrm{div}}},T)}^2= & {} \Vert I_F\varvec{\tau }- b_T {{\mathrm{dev}}}Q(T) \Vert _{L^2(T)}^2\\&+\Vert {{\mathrm{div}}}I_F\varvec{\tau }-{{\mathrm{dev}}}Q(T) \nabla b_T \Vert _{L^2(T)}^2,\end{aligned}$$

estimate the Frobenius norm \(\Vert Q(T) \Vert _{F}\) of Q(T) as follows. Since \(\vert {{\mathrm{mid}}}(T)-P_E\vert \le 2h_T/3\) and \(\Vert \phi _E \Vert _{L^2(T)}^2=|T|/3\), the Cauchy-Schwarz inequality allows

Moreover, \(\Vert b_T \Vert _{L^2(T)}^2=10|T|/7\) and \(\Vert \nabla b_T \Vert _{L^2(T)}^2=20 |T|\Vert {{\mathrm{G}}}(T) \Vert _{F}^2\), with

$$\begin{aligned} G(T):=\begin{pmatrix} \nabla \varphi _1^\top \\ \nabla \varphi _2^\top \\ \nabla \varphi _3^\top \end{pmatrix} =\begin{pmatrix} 1&{}\quad 1&{}\quad 1\\ P_1&{}\quad P_2&{}\quad P_3\end{pmatrix}^{-1}\begin{pmatrix} 0&{}\quad 0\\ 1&{}\quad 0\\ 0&{}\quad 1\end{pmatrix} \end{aligned}$$

and \(\Vert G(T) \Vert _{F}^2=(2|T|)^{-2}\sum _{E\in \mathcal {E}(T)}|E|^2\le 3 h_T^2(2|T|)^{-2}.\) Let \(\alpha _T\) denote the smallest angle in T and recall \(h_T^2\le 4|T|\cot (\alpha _T)\). Hence,

$$\begin{aligned} \Vert b_T {{\mathrm{dev}}}Q(T) \Vert _{L^2(T)}^2&\le \Vert Q(T) \Vert _{F}^2 \Vert b_T \Vert _{L^2(T)}^2 = {20h_T^2}/{21}\ \Vert {{\mathrm{div}}}\varvec{\tau } \Vert _{L^2(T)}^2, \\ \Vert {{\mathrm{dev}}}Q(T)\ \nabla b_T \Vert _{L^2(T)}^2&\le \Vert Q(T) \Vert _{F}^2\Vert \nabla b_T \Vert _{L^2(T)}^2={15h_T^4}/{|T|}\ \Vert {{\mathrm{div}}}\varvec{\tau } \Vert _{L^2(T)}^2 \\&\le {60 h_T^2\cot (\alpha _T)}\Vert {{\mathrm{div}}}\varvec{\tau } \Vert _{L^2(T)}^2. \end{aligned}$$

Alltogether,

$$\begin{aligned} \Vert \varPi _\tau (\varvec{\tau }) \Vert _{H({{\mathrm{div}}},T)}^2&\le \left( \Vert \varPi _0\varvec{\tau } \Vert _{L^2(T)}+\Vert Q(T) \Vert _{L^2(T)}+\Vert b_T {{\mathrm{dev}}}Q(T) \Vert _{L^2(T)}\right) ^2 \\&\quad +\left( \Vert {{\mathrm{div}}}\varPi _0\varvec{\tau } \Vert _{L^2(T)}+\Vert {{\mathrm{dev}}}Q(T) \nabla b_T \Vert _{L^2(T)}\right) ^2 \\&\le \left( \Vert \varvec{\tau } \Vert _{L^2(T)}+\left( \sqrt{2/3}+\sqrt{20/21}\right) h_T\Vert {{\mathrm{div}}}\varvec{\tau } \Vert _{L^2(T)}\right) ^2 \\&\quad +\left( 1+2\sqrt{15\cot (\alpha _T)}h_T\right) ^2\Vert {{\mathrm{div}}}\varvec{\tau } \Vert _{L^2(T)}^2 \\&\le \left( 1+3.22h_T^2+(1+7.75\sqrt{\cot (\alpha )}h_T)^2\right) \Vert \varvec{\tau } \Vert _{H({{\mathrm{div}}},T)}^2 \\&\le (2+15.5 \sqrt{\cot (\alpha _T)}h_T+(3.22+60\cot (\alpha _T)) h_T^2)\Vert \varvec{\tau } \Vert _{H({{\mathrm{div}}},T)}^2. \end{aligned}$$

Set \({\hat{\varPi }}(\varvec{\tau },v)|_T:=(\varPi _\tau (\varvec{\tau }|_T),I_{\text { NC}}^\text {pw}v|_T)\) as in (51). Given \(y=(\varvec{\tau },v)\in Y\), the above computation, the abbreviation \(\alpha _{\min }\) for the smallest angle of the triangulation (which is bounded in a regular triangulation) and [12, Thm. 4] prove

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstensen, C., Puttkammer, S. A low-order discontinuous Petrov–Galerkin method for the Stokes equations. Numer. Math. 140, 1–34 (2018). https://doi.org/10.1007/s00211-018-0965-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0965-3

Keywords

Mathematics Subject Classification

Navigation