Skip to main content
Log in

Regular decomposition and a framework of order reduced methods for fourth order problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is devoted to the construction of order reduced method of fourth order problems. A constructive framework is presented such that a problem on the high-regularity space can be deduced to an equivalent system on three low-regularity spaces which are connected by a regular decomposition corresponding to a decomposition of the regularity of the high order space. The generated numerical schemes based on the deduced problems can be of lower complicacy, and the framework is fit for various fourth order problems. Three fourth order problems are then discussed under the framework, including one in two dimension and two in three dimension. They are each corresponding to a regular decomposition, and thus are discretised based on the discretised analogues of the regular decomposition; optimal error estimates are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A detailed calculation of (17) is given in the appendix.

References

  1. Arnold, D.N., Scott, L.R., Vogelius, M.: Regular inversion of the divergence operator with dirichlet boundary conditions on a polygon. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 15(2), 169–192 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO-Modélisation mathématique et analyse numérique 19(1), 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning discrete approximations of the Reissner–Mindlin plate model. RAIRO-Modélisation mathématique et analyse numérique 31(4), 517–557 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49(2), 789–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  7. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birman, M.S., Solomyak, M.Z.: \(L_2\)-Theory of the maxwell operator in arbitrary domains. Russ. Math. Surv. 42(6), 75 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M. et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

  10. Boffi, D., Conforti, M., Gastaldi, L.: Modified edge finite elements for photonic crystals. Numer. Math. 105(2), 249–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Monk, P., Sun, J.: \(C^0\) interior penalty Galerkin method for biharmonic eigenvalue problems. In: Kirby, R.M. et al. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture notes in computational science and engineering, vol. 106. Springer, Switzerland (2015)

  12. Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(1–3), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Fortin, M.: Numerical approximation of Mindlin–Reissner plates. Math. Comput. 47(175), 151–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 1(02), 125–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cakoni, F., Haddar, H.: A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl. Imaging 1(3), 443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P.G.: The finite element method for elliptic problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  17. Ciarlet, P.G., Raviart, P.-A.: A mixed finite element method for the biharmonic equation. In: Proceedings of Symposium on Mathematical Aspects of Finite Elements in PDE, pp. 125–145, (1974)

  18. Colton, D., Monk, P.: The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41(1), 97–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dhia, A.-S.B.-B., Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59(6), 2028–2044 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191(34), 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Falk, R.S.: Finite elements for the Reissner–Mindlin plate. In: Mixed finite elements, compatibility conditions, and applications, pp. 195–232. Springer, (2008)

  22. Emmanuil, H.: Georgoulis and Paul Houston. Discontinuous galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  24. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (eds.) Linear Theories of Elasticity and Thermoelasticity, pp. 1–295. Springer, Heidelberg (1973)

  25. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavica-Civil Engineering and Building Construction Series, (46):1, (1967)

  26. Herrmann, L.R.: Finite-element bending analysis for plates (approximation method for finite element bending analysis of variable structural plates, giving linear equations defining nodal values). Am. Soc. Civil Eng. Eng. Mech. Div. J. 93, 13–26 (1967)

    Google Scholar 

  27. Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21(1), 43–62 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37(3), 213–225 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krendl, W., Rafetseder, K., Zulehner, W.: A decomposition result for biharmonic problems and the Hellan–Herrmann–Johnson method. ETNA Electron. Trans. Numer. Anal. 45, 257–282 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Li, Z., Zhang, S.: A stable mixed element method for the biharmonic equation with first-order function spaces. Comput. Methods Appl. Math., to appear, (2017)

  33. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Quart. 19(02), 149–169 (1968)

    Google Scholar 

  34. Mu, L., Wang, J., Wang, Y., Ye, X.: A weak galerkin mixed finite element method for biharmonic equations. In: Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, pp. 247–277. Springer, (2013)

  35. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pasciak, J.E., Zhao, J.: Overlapping schwarz methods in H(curl) on polyhedral domains. J. Numer. Math. 10(3), 221–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pitkäranta, J.: Analysis of some low-order finite element schemes for Mindlin–Reissner and Kirchhoff plates. Numer. Math. 53(1–2), 237–254 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Raviart, P., Thomas, J.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315, (1977)

  39. Rusten, T., Winther, R.: A preconditioned iterative method for saddle point problems. SIAM J. Matrix Anal. Appl. 13(3), 887–904 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO-Modélisation mathématique et analyse numérique 19(1), 111–143 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Tai, X.-C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43(4), 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68(12), 2314–2330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, M., Shi, Z., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106(2), 335–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, M., Shi, Z.-C., Xu, J.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)

    MathSciNet  MATH  Google Scholar 

  45. M, Wang, Xu, J.: The Morley element for fourth order elliptic problems in any dimension. Numer. Math. 103, 155–169 (2006)

    Article  MathSciNet  Google Scholar 

  46. Ming, W., Xu, J.: Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comput. 76(257), 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, M., Xu, J.: Minimal finite element spaces for \(2m\)-th-order partial differential equations in \(\mathbb{R}^n\). Math. Comput. 82(281), 25–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xi, Y., Ji, X., Zhang, S.: A multi-level mixed element scheme of the two dimensional Helmholtz transmission eigenvalue problem. arXiv preprint arXiv:1707.00567, (2017)

  49. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, J.: Fast poisson-based solvers for linear and nonlinear PDEs. Proc. Int. Congr. Math. 4, 2886–2912 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Ženíšek, A.: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7(4), 334–351 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, R., Zhai, Q.: A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput. 64(2), 559–585 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, S.: A family of 3d continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, S.: Amiable mixed schemes for fourth order curl equations. submitted. also arXiv preprint arXiv:1607.04923, (2016)

  55. Zhang, S.: Stable mixed element schemes for plate models on multiply-connected domains. submitted, arXiv preprint arXiv:1702.06401, (2017)

  56. Zhang, S., Xi, Y., Ji, X.: A multi-level mixed element method for the eigenvalue problem of biharmonic equation. arXiv preprint arXiv:1606.05419, (2016)

  57. Zhang, S., Xu, J.: Optimal solvers for fourth-order PDEs discretized on unstructured grids. SIAM J. Numer. Anal. 52, 282–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \(\mathbb{R}^3\). Math. Comput. 80(276), 1871–1886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Zhang.

Additional information

The author is supported by the National Natural Science Foundation of China with Grant No. 11471026 and National Centre for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

Appendix A: Detailed calculation of (17)

Appendix A: Detailed calculation of (17)

In this section, we present a detailed proof of the lemma below.

Lemma 19

For a tetrahedron K, there exists a constant C depending on the regularity of K, such that

$$\begin{aligned} \Vert \nabla (p+q)\Vert _{0,K}^2\geqslant C_K(\Vert \nabla p\Vert _{0,K}^2+h_k^{-2}\Vert q\Vert _{0,K}^{2}), \end{aligned}$$
(47)

for any \(p\in P_1(K)\) and \(q\in P^e(K)\) or \(q\in P^f(K)\).

Proof

Denote by \(\{\phi _i\}_{i=1}^{10}\) a set of basis functions of \(P_1^{+e}(K):=P_1(K)+P^e(K)\), such that \(\phi _i=\lambda _i\), \(i=1:4\), and \(\{\phi _j\}_{j=5}^{10}=\{\lambda _i\lambda _k\}_{1\leqslant i\ne k\leqslant 4}\). Let \(A=(a_{ij})_{10\times 10}\) be the element-wise stiffness matrix of \(P_1^{+e}(K)\) with respect to \((\nabla \cdot ,\nabla \cdot )\). It is well known that the smallest eigenvalue of A is zero, and there are two positive constants \(c_s\) and \(C_b\) depending on K only, such that \(c_s\leqslant \lambda \leqslant C_b\) for any positive eigenvalue \(\lambda \) of A.

We rewrite A in a block formulation:

$$\begin{aligned} A=\left[ \begin{array}{cc} a_{11}&{}\quad A_{RT} \\ A_{LB} &{}\quad A_{RB} \end{array} \right] , \quad A_{RT}=A_{LB}^t\in \mathbb {R}^{1\times 9},\ A_{RB}\in \mathbb {R}^{9\times 9}. \end{aligned}$$

Then, as constant forms the kernel space of \(\nabla \), direct calculation leads to that

$$\begin{aligned} \left[ \begin{array}{cc} \mathbb {P} &{}\quad \mathbf {0} \\ \mathbf {0}&{}\quad \mathrm {Id}_{6\times 6} \end{array}\right] A \left[ \begin{array}{cc} \mathbb {P}^t &{}\quad \mathbf {0} \\ \mathbf {0}&{}\quad \mathrm {Id}_{6\times 6} \end{array}\right] = \left[ \begin{array}{cc} 0&{}\quad \mathbf {0} \\ \mathbf {0} &{} A_{RB} \end{array} \right] , \end{aligned}$$

and

$$\begin{aligned} A= \left[ \begin{array}{cc} \mathbb {P}^{-1} &{}\quad \mathbf {0} \\ \mathbf {0}&{}\quad \mathrm {Id}_{6\times 6} \end{array}\right] \left[ \begin{array}{cc} 0&{}\quad \mathbf {0} \\ \mathbf {0} &{}\quad A_{RB} \end{array} \right] \left[ \begin{array}{cc} \mathbb {P}^{-t} &{} \mathbf {0} \\ \mathbf {0}&{}\quad \mathrm {Id}_{6\times 6} \end{array}\right] , \end{aligned}$$

where \(\mathbb {P}=\left[ \begin{array}{cccc} 1&{}\quad 1&{}\quad 1&{}\quad 1 \\ &{}\quad 1&{}&{} \\ &{}&{}\quad 1&{} \\ &{}&{}&{}\quad 1 \end{array} \right] \), and \(\mathbb {P}^{-1}=\left[ \begin{array}{cccc} 1&{}\quad -1&{}\quad -1&{}\quad -1 \\ &{}\quad 1&{}&{} \\ &{}&{}\quad 1&{} \\ &{}&{}&{}\quad 1 \end{array} \right] \). Preliminary algebraic calculation leads to that, there are two positive constants \(\hat{c}_s\) and \(\hat{C}_b\), such that \(\hat{c}_s\leqslant \hat{\lambda }\leqslant \hat{C}_b\) for all eigenvalues \(\hat{\lambda }\) of \(A_{RB}\).

Now for \(p=\sum _{i=1}^4\mu _i\lambda _i\), and \(q=\sum _{i=1}^6\nu _i\phi _i\),

$$\begin{aligned}&\Vert \nabla (p+q)\Vert _{0,K}^2=(\mu _1,\ldots ,\mu _4,\nu _1,\ldots ,\nu _6)A(\mu _1,\ldots ,\mu _4,\nu _1,\ldots ,\nu _6)^t\\&\quad =(\mu _1-\mu _2,\mu _1-\mu _3,\mu _1-\mu _4,\nu _1,\ldots ,\nu _6)\\&\quad A_{RB}(\mu _1-\mu _2,\mu _1-\mu _3,\mu _1-\mu _4,\nu _1,\ldots ,\nu _6)^t \\&\quad \left\{ \begin{array}{l} \displaystyle \geqslant \hat{c}_s\left[ (\mu _1-\mu _2)^2+(\mu _1-\mu _3)^2+(\mu _1-\mu _4)^2+\sum _{i=1}^6\nu _i^2\right] , \\ \displaystyle \leqslant \hat{C}_b\left[ (\mu _1-\mu _2)^2+(\mu _1-\mu _3)^2+(\mu _1-\mu _4)^2+\sum _{i=1}^6\nu _i^2\right] . \end{array} \right. \end{aligned}$$

Similarly, there are two positive constants \(\tilde{c}_s\) and \(\tilde{C}_b\), such that

$$\begin{aligned} \Vert p+q\Vert _{0,K}^2\left\{ \begin{array}{l} \displaystyle \geqslant \tilde{c}_s |K|\left[ \sum _{i=1}^2\mu _i^2+\sum _{i=1}^6\nu _j^2\right] \\ \displaystyle \leqslant \tilde{C}_b |K|\left[ \sum _{i=1}^2\mu _i^2+\sum _{i=1}^6\nu _j^2\right] . \end{array} \right. \end{aligned}$$

Combine the two representations above together completes the proof for \(p\in P_1(K)\) and \(q\in P^e(K)\). The proof for the case \(q\in P^f(K)\) is the same. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math. 138, 241–271 (2018). https://doi.org/10.1007/s00211-017-0902-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0902-x

Mathematics Subject Classification

Navigation