Skip to main content
Log in

Meshfree finite difference approximations for functions of the eigenvalues of the Hessian

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce meshfree finite difference methods for approximating nonlinear elliptic operators that depend on second directional derivatives or the eigenvalues of the Hessian. Approximations are defined on unstructured point clouds, which allows for very complicated domains and a non-uniform distribution of discretisation points. The schemes are monotone, which ensures that they converge to the viscosity solution of the underlying PDE as long as the equation has a comparison principle. Numerical experiments demonstrate convergence for a variety of equations including problems posed on random point clouds, complex domains, degenerate equations, and singular solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge-Ampère equation: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Belytschko, T., Lu, Y.Y., Gu, L.: Crack propagation by element-free Galerkin methods. Eng. Fract. Mech. 51(2), 295–315 (1995)

    Article  Google Scholar 

  4. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge-Ampère equation. M2AN. Math. Model. Numer. Anal. 44(4), 737–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnans, J.F., Ottenwaelter, É., Zidani, H.: A fast algorithm for the two dimensional HJB equation of stochastic control. ESAIM Math. Model. Numer. Anal. 38(4), 723–735 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.-Y.: \({C}^0\) penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput. 80(276), 1979–1995 (2011)

    Article  MATH  Google Scholar 

  8. Budd, C.J., Williams, J.F.: Moving mesh generation using the parabolic Monge-Ampère equation. SIAM J. Sci. Comput. 31(5), 3438–3465 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Milman, M.: Monge Ampère Equation: Applications to Geometry and Optimization: NSF-CBMS Conference on the Monge Ampère Equation, Applications to Geometry and Optimization, July 9–13, 1997, Florida Atlantic University, volume 226. American Mathematical Soc. (1999)

  10. Crandall, M .G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cullen, M.J.P., Norbury, J., Purser, R.J.: Generalised Lagrangian solutions for atmospheric and oceanic flows. SIAM J. Appl. Math. 51(1), 20–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

    Article  MATH  Google Scholar 

  13. Demkowicz, L., Karafiat, A., Liszka, T.: On some convergence results for FDM with irregular mesh. Comput. Methods Appl. Mech. Eng. 42(3), 343–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duarte, C.A., Oden, J.T.: Hp clouds-an hp meshless method. Numer. Methods Partial Differ. Equ. 12(6), 673–706 (1996)

    Article  MATH  Google Scholar 

  15. Engquist, B., Froese, B.D.: Application of the Wasserstein metric to seismic signals. Commun. Math. Sci, 12(5), (2014)

  16. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, Z., Froese, B.D., Huang, C.-Y., Ma, D., Liang, R.: Creating unconventional geometric beams with large depth of field using double freeform-surface optics. Appl. Optics 54(20), 6277–6281 (2015)

    Article  Google Scholar 

  19. Finn, J.M., Delzanno, G.L., Chacón, L.: Grid generation and adaptation by Monge-Kantorovich optimization in two and three dimensions. In: Proceedings of the 17th International Meshing Roundtable, pp. 551–568 (2008)

  20. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002)

    Article  Google Scholar 

  22. Froese, B.D.: A numerical method for the elliptic Monge-Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012)

    Article  MATH  Google Scholar 

  23. Froese, B.D.: Convergence approximation of non-continuous surfaces of prescribed Gaussian curvature. (2017). Submitted, https://arxiv.org/pdf/1601.06315.pdf

  24. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge-Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J. Math. Sci. (N. Y.) 117(3), 4096–4108 (2003). Nonlinear problems and function theory

    Article  MathSciNet  MATH  Google Scholar 

  27. Iliev, O., Tiwari, S.: A generalized (meshfree) finite difference discretization for elliptic interface problems. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) Numerical Methods and Applications, pp. 488–497. Springer (2003)

  28. Kocan, M.: Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numerische Mathematik 72(1), 73–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kushner, H., Dupuis, P.G.: Numerical Methods for Stochastic Control Problems in Continuous Time, vol. 24. Springer, Berlin (2013)

    MATH  Google Scholar 

  30. Lai, R., Liang, J., Zhao, H.: A local mesh method for solving PDEs on point clouds. Inverse Prob. Imaging 7(3), 737–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11(1), 83–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liszka, T.J., Duarte, C.A.M., Tworzydlo, W.W.: hp-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1), 263–288 (1996)

    Article  MATH  Google Scholar 

  33. Loeper, G., Rapetti, F.: Numerical solution of the Monge-Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340(4), 319–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Logg, A.: FEniCS project data. http://fenicsproject.org/download/data.html#data. Accessed 9 Oct 2015

  35. Motzkin, T.S., Wasow, W.: On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31, 253–259 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oberman, A .M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  39. Saumier, L.-P., Agueh, M., Khouider, B.: An efficient numerical algorithm for the L2 optimal transport problem with periodic densities. IMA J. Appl. Math. 80(1), 135–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seibold, B.: Minimal positive stencils in meshfree finite difference methods for the poisson equation. Comput. Methods Appl. Mech. Eng. 198(3), 592–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smears, I., Suli, E.: Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52(2), 993–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany D. Froese.

Additional information

This work was partially supported by NSF DMS-1619807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Froese, B.D. Meshfree finite difference approximations for functions of the eigenvalues of the Hessian. Numer. Math. 138, 75–99 (2018). https://doi.org/10.1007/s00211-017-0898-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0898-2

Mathematics Subject Classification

Navigation