Skip to main content
Log in

The Hessian Discretisation Method for Fourth Order Linear Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a unified framework, the Hessian discretisation method (HDM), which is based on four discrete elements (called altogether a Hessian discretisation) and a few intrinsic indicators of accuracy, independent of the considered model. An error estimate is obtained, using only these intrinsic indicators, when the HDM framework is applied to linear fourth order problems. It is shown that HDM encompasses a large number of numerical methods for fourth order elliptic problems: finite element methods (conforming and non-conforming) as well as finite volume methods. We also use the HDM to design a novel method, based on conforming \(\mathbb {P}_1\) finite element space and gradient recovery operators. Results of numerical experiments are presented for this novel scheme and for a finite volume scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balasundaram, S., Bhattacharyya, P.K.: A mixed finite element method for fourth order elliptic equations with variable coefficients. Comput. Math. Appl. 10(3), 245–256 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharyya, P.K.: Mixed finite element methods for fourth order elliptic problems with variable coefficients. In: Brebbia, C.A. (ed.) Variational Methods in Engineering (Southampton, 1985), pp. 2.3–2.12. Springer, Berlin (1985)

    Google Scholar 

  3. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  4. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \({C}^0\) linear finite element method for two fourth-order eigenvalue problems. IMA J. Numer. Anal. (2016). https://doi.org/10.1093/imanum/drw051

    Article  MATH  Google Scholar 

  5. Chen, J., Wang, D., Du, Q.: Linear finite element super-convergence on simplicial meshes. Math. Comput. 83, 2161–2185 (2014)

    Article  MATH  Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, New York (1978)

    MATH  Google Scholar 

  7. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications (Berlin) [Mathematics and Applications], vol. 69. Springer, Heidelberg (2012)

    Google Scholar 

  8. Douglas Jr., J., Dupont, T., Percell, P., Scott, R.: A family of \(C^{1}\) finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér. 13(3), 227–255 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droniou, J., Eymard, R.: The asymmetric gradient discretisation method. In: Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, volume 199 of Springer Proceedings of Mathematics and Statistics, pp. 311–319. Springer, Cham (2017)

  10. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method, Mathematics and Applications, 82. Springer, Berlin (2018). https://hal.archives-ouvertes.fr/hal-01382358

  11. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Techniques of Scientific Computing. Part III, Handbook of Numerical Analysis, VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  12. Eymard, R., Gallouët, T., Herbin, R., Linke, A.: Finite volume schemes for the biharmonic problem on general meshes. Math. Comput. 81(280), 2019–2048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eymard, R., Herbin, R.: Approximation of the biharmonic problem using piecewise linear finite elements. C. R. Math. Acad. Sci. Paris 348(23–24), 1283–1286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falk, R.S.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15(3), 556–567 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R. (ed.) Finite Volumes for Complex Applications V, pp. 659–692. ISTE, London (2008)

    MATH  Google Scholar 

  16. Kim, C., Lazarov, R., Pasciak, J., Vassilevski, P.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lamichhane, B.: Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. Ph.D. thesis, Universität Stuttgart (2006)

  18. Lamichhane, B.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 235, 5188–5197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamichhane, B., Stevenson, R., Wohlmuth, B.: Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numer. Math. 102, 93–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamichhane, B.P.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 235(17), 5188–5197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamichhane, B.P.: A finite element method for a biharmonic equation based on gradient recovery operators. BIT 54(2), 469–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. Rev. Fr. Autom. Inform. Rech. Oper. Rouge Anal. Numér. 9(R–1), 9–53 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Li, J.: Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J. Math. Anal. Appl. 230(2), 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., An, R., Li, K.: Some optimal error estimates of biharmonic problem using conforming finite element. Appl. Math. Comput. 194(2), 298–308 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Nataraj, N., Bhattacharyya, P.K., Balasundaram, S., Gopalsamy, S.: On a mixed-hybrid finite element method for anisotropic plate bending problems. Int. J. Numer. Methods Eng. 39(23), 4063–4089 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Percell, P.: On cubic and quartic Clough–Tocher finite elements. SIAM J. Numer. Anal. 13(1), 100–103 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3(4), 316–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scapolla, T.: A mixed finite element method for the biharmonic problem. RAIRO Anal. Numér. 14(1), 55–79 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Xie, Z.H.: Error estimate of nonconforming finite element approximation for a fourth order elliptic variational inequality. Northeast. Math. J. 8(3), 329–336 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devika Shylaja.

Appendix: Technical Results

Appendix: Technical Results

Lemma A.1

(Poincaré inequality along an edge) Let \({\sigma }\) be an edge of a polygonal cell, \(w \in H^1({\sigma })\) and assume that w vanish at a point on the edge \({\sigma }\in {\mathcal F}\). Then there exists \( C > 0 \) such that

$$\begin{aligned} \Vert w\Vert _{L^2({\sigma })} \le h_{{\sigma }} \Vert \partial w\Vert _{L^2({\sigma })}, \end{aligned}$$

where \(\partial \) denotes the derivative along the edge and \(h_{\sigma }\) is the length of the edge.

Proof

Let m denote the point on the edge \({\sigma }\) which satisfies \(w(m) = 0\). For \(m < x\), we get

$$\begin{aligned} w(x) = w(m) + \int _{m}^{x}\partial w(y){\,\mathrm d}y = \int _{m}^{x}\partial w(y){\,\mathrm d}y. \end{aligned}$$

A use of Cauchy–Schwarz inequality yields

$$\begin{aligned} |w(x)|&\le |x-m|^{1/2}\bigg (\int _{m}^{x}|\nabla w|^2{\,\mathrm d}y\bigg )^{1/2}\\&\le \sqrt{h_{\sigma }}\bigg (\int _{\sigma }|\partial w|^2{\,\mathrm d}y\bigg )^{1/2}. \end{aligned}$$

Squaring this yields \(|w(x)|^2\le h_{\sigma }\int _{\sigma }|\partial w|^2{\,\mathrm d}y\) and integrating over the edge concludes the proof. \(\square \)

Lemma A.2

(Integration by parts) Let P be a fourth order tensor. For \(\xi \in H^2({\Omega })^{d \times d}\) and \(\phi \in H^1(\Omega )\), we have

$$\begin{aligned} \int _\Omega (\mathcal H:P\xi )\phi =-\int _\Omega \nabla \phi \cdot \mathrm{div}(P\xi ) + \int _{\partial \Omega } \mathrm{div}(P\xi \cdot n)\phi . \end{aligned}$$

For \(\psi \in H^2(\Omega )\),

$$\begin{aligned} \int _\Omega P\xi :\mathcal H\psi =-\int _\Omega \nabla \psi \cdot \mathrm{div}(P\xi ) + \int _{\partial \Omega } (\mathrm{div}(P\xi n))\cdot \nabla \psi . \end{aligned}$$

For \(\zeta \in H^1(\Omega )^d\),

$$\begin{aligned} \int _\Omega P\xi :\nabla \zeta = -\int _\Omega \mathrm{div}(P\xi )\cdot \zeta + \int _ {\partial \Omega }(\mathrm{div}(P\xi n))\cdot \zeta . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droniou, J., Lamichhane, B.P. & Shylaja, D. The Hessian Discretisation Method for Fourth Order Linear Elliptic Equations. J Sci Comput 78, 1405–1437 (2019). https://doi.org/10.1007/s10915-018-0814-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0814-7

Keywords

Navigation