Skip to main content
Log in

A nearly optimal multigrid method for general unstructured grids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we develop a multigrid method on unstructured shape-regular grids. For a general shape-regular unstructured grid of \({\mathcal O}(N)\) elements, we present a construction of an auxiliary coarse grid hierarchy on which a geometric multigrid method can be applied together with a smoothing on the original grid by using the auxiliary space preconditioning technique. Such a construction is realized by a cluster tree which can be obtained in \({\mathcal O}(N\log N)\) operations for a grid of N elements. This tree structure in turn is used for the definition of the grid hierarchy from coarse to fine. For the constructed grid hierarchy we prove that the convergence rate of the multigrid preconditioned CG for an elliptic PDE is \(1 - {\mathcal O}({1}/{\log N})\). Numerical experiments confirm the theoretical bounds and show that the total complexity is in \({\mathcal O}(N\log N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36(153), 35–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Xu, J.: A hierarchical basis multigrid method for unstructured grids. Notes Numer. Fluid Mech. 49, 1–1 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55(4), 379–393 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the v-cycle. SIAM J. Numer. Anal. 20(5), 967–975 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49(180), 311–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57(195), 23–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56(193), 1–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D. (ed.) Sparsity and its Applications, pp. 257–284. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  10. Brannick, J., Chen, Y., Hu, X., Zikatanov, L.: Parallel unsmoothed aggregation algebraic multigrid algorithms on gpus. In: Numerical Solution of Partial Differential Equations: Theory. Algorithms, and Their Applications, pp. 81–102. Springer, Berlin (2013)

  11. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (SA) multigrid. SIAM Rev. 47(2), 317–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezina, M., Vaněk, P., Vassilevski, P.S.: An improved convergence analysis of smoothed aggregation algebraic multigrid. Numer. Linear Algebra Appl. 19(3), 441–469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bulgakov, V.: Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems. Commun. Numer. Methods Eng. 9(8), 649–657 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, L., Nochetto, R., Xu, J.: Optimal multilevel methods for graded bisection grids. Numer. Math. 120(1), 1–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, L., Zhang, C.: A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math 28(6), 767–789 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P.: Basic error estimates for elliptic problems. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 17–352. North Holland, Amsterdam (1991)

    Google Scholar 

  17. Falgout, R.D., Vassilevski, P.S.: On generalizing the algebraic multigrid framework. SIAM J. Numer. Anal. 42(4), 1669–1693 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid convergence estimates. Numer. Linear Algebra Appl. 12(5–6), 471–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feuchter, D., Heppner, I., Sauter, S., Wittum, G.: Bridging the gap between geometric and algebraic multigrid methods. Comput. Visual. Sci. 6, 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feuchter, D., Heppner, I., Sauter, S., Wittum, G.: Bridging the gap between geometric and algebraic multi-grid methods. Comput. Visual. Sci. 6(1), 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Finkel, R., Bentley, J.: Quad trees a data structure for retrieval on composite keys. Acta Inf. 4(1), 1–9 (1974)

    Article  MATH  Google Scholar 

  22. Grasedyck, L., Hackbusch, W., Le Borne, S.: Adaptive geometrically balanced clustering of \({\cal H}\)-matrices. Computing 73, 1–23 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Grasedyck, L., Hackbusch, W., LeBorne, S.: Adaptive refinement and clustering of \(\cal H \)-matrices. Tech. Rep. 106, Max Planck Institute of Mathematics in the Sciences (2001)

  24. Grasedyck, L., Kriemann, R., LeBorne, S.: Domain-decomposition based \(\cal H \)-matrix preconditioners. In: Proceedings of DD16, LNSCE. Springer, Berlin (2005, to appear)

  25. Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer, Berlin (1985)

    MATH  Google Scholar 

  26. Henson, V., Yang, U.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, X., Xu, J., Zhang, C.: Application of auxiliary space preconditioning in field-scale reservoir simulation. In: Science China Mathematics, pp. 1–15 (2013)

  28. Hu, X., Zhang, C.S., Wu, S., Zhang, S., Wu, X., Xu, J., Zikatanov, L.: Combined preconditioning with applications in reservoir simulation. Multisc. Model. Simul. 11(2), 507–521 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, J., Vassilevski, P.: AMGe based on element agglomeration. SIAM J. Sci. Comput. 23(1), 109–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lashuk, I., Vassilevski, P.: On some versions of the element agglomeration AMGe method. Numer. Linear Algebra Appl. 15(7), 595–620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liehr, F., Preusser, T., Rumpf, M., Sauter, S., Schwen, L.: Composite finite elements for 3D image based computing. Comput. Visual. Sci. 12, 171–188 (2009)

    Article  MathSciNet  Google Scholar 

  32. Nepomnyaschikh, S.: Decomposition and fictitious domains methods for elliptic boundary value problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 62–72 (1992)

  33. Ruge, R.W., Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG). In: Paddon, H.H.D.J. (ed.) Multigrid Methods for Integral and Differential Equations, pp. 169–212. Clarenden Press, Oxford (1985)

    Google Scholar 

  34. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13(3–4), 419–451 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stüben, K.: Algebraic multigrid (AMG): an introduction with applications. In: Trottenberg, U., Oosterlee, C.W., Schüller, A. (eds.) Multigrid. Academic Press, New York (2000). Also GMD Report 53, March 1999

    Google Scholar 

  37. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128(1), 281–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thum, P., Diersch, H.J., Gründler, R.: SAMG—the linear solver for groundwater simulation. In: MODELCARE 2011. Leipzig, Germany (2011)

  39. Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operators. Appl. Math. 37(4), 265–274 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Vaněk, P.: Fast multigrid solver. Appl. Math. 40(1), 1–20 (1995)

    MathSciNet  MATH  Google Scholar 

  41. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes, vol. 34. UCD/CCM Report (1994)

  42. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3), 179–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, L., Hu, X., Cohen, J., Xu, J.: A parallel auxiliary grid algebraic multigrid method for graphic processing units. SIAM J. Sci. Comput. 35(3), C263–C283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, J.: Theory of multilevel methods, vol. 8924558. Cornell Unversity, May (1989)

  45. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56, 215–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, J.: An introduction to multigrid convergence theory. In: Chan, R., Chan, T., Golub, G. (eds.) Iterative Methods in Scientific Computing. Springer, Berlin (1997)

    Google Scholar 

  48. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for \(H(grad)\), \(H(curl)\), and \(H(div)\) systems on graded and unstructured grids. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer, Berlin (2009)

    Chapter  Google Scholar 

  49. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(3), 573–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49(4), 379–412 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yserentant, H.: Coarse grid spaces for domains with a complicated boundary. Numer. Algorith. 21(1), 387–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang.

Additional information

This work was supported by NSF DOE DE-SC0006903, DMS-1217142 and Center for Computational Mathematics and Applications at Penn State.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasedyck, L., Wang, L. & Xu, J. A nearly optimal multigrid method for general unstructured grids. Numer. Math. 134, 637–666 (2016). https://doi.org/10.1007/s00211-015-0785-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0785-7

Keywords

Mathematics Subject Classification

Navigation