Skip to main content
Log in

Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider Lyapunov exponents and Sacker–Sell spectrum for linear, nonautonomous retarded functional differential equations posed on an appropriate Hilbert space. A numerical method is proposed to approximate such quantities, based on the reduction to finite dimension of the evolution family associated to the system, to which a classic discrete QR method is then applied. The discretization of the evolution family is accomplished by a combination of collocation and generalized Fourier projection. A rigorous error analysis is developed to bound the difference between the computed stability spectra and the exact stability spectra. The efficacy of the results is illustrated with some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Badawy, M., Van Vleck, E.: Perturbation theory for the approximation of stability spectra by QR methods for sequencies of linear operators on a Hilbert space. Linear Algebra Appl. 437(1), 37–59 (2012)

    Google Scholar 

  2. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Numerical Mathemathics and Scientifing Computing series. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15, 9–20 (1980)

    Article  MATH  Google Scholar 

  4. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 2: numerical applications. Meccanica 15, 21–30 (1980)

    Article  Google Scholar 

  5. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and control of infinite dimensional systems, vol. I and II. Birkhäuser, Boston (1992, 1993)

  6. Benzoni-Gavage, S.: Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. J. Dyn. Differ. Equ. 14(3), 613–674 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benzoni-Gavage, S., Huot, P.: Existence of semi-discrete shocks. Discret. Contin. Dyn. S. 8, 163–190 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Bernier, C., Manitius, A.: On semigroups in \(\mathbb{R}^{n}\times L^{p}\) corresponding to differential equations with delays. Can. J. Math. 30(5), 897–914 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Borisovic̆, J.G., Turbabin, A.S.: On the Cauchy problem for linear nonhomogeneous differential equations with retarded arguments. Dokl. Akad. Nauk SSSR 185(4), 741–744 (1969). English transl. Soviet Math. Dokl. 10(2):401–405 (1969)

  10. Breda, D.: Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents. Diff. Int. Equ. 23(9–10), 935–956 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27(2), 482–495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral techniques for stability computation of linear time delay systems. In: 44th IEEE Conference on Decision and Control and European Control Conference (CDC/ECC 2005) (2005)

  13. Breda, D., Maset, S., Vermiglio, R.: On discretizing the semigroup of solution operators for linear time invariant—time delay systems. In: Vyhlidal, T., Zitek, P. (eds.) Time Delay Systems 2010, IFAC Proceedings Volumes, vol. 9. Elsevier, Oxford (2010)

    Google Scholar 

  14. Breda, D., Maset, S., Vermiglio, R.: Approximation of eigenvalues of evolution operators for linear retarded functional differential equations. SIAM J. Numer. Anal. 50(3), 1456–1483 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation Series. Springer, Berlin (2007)

    Google Scholar 

  16. Chicone, C., Latushkin, Y.: Evolution semigroups in dynamical systems and differential equations. No. 70 in SURV series. American Mathematical Society, USA (1999)

    Book  Google Scholar 

  17. Chow, S.N., Leiva, H.: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differ. Equ. 120(2), 429–477 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chow, S.N., Leiva, H.: Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces. Proc. Am. Math. Soc. 124, 1071–1081 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chow, S.N., Leiva, H.: Unbounded perturbation of the exponential dichotomy for evolution equations. J. Differ. Equ. 129, 509–531 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Colonius, F., Manitius, A., Salamon, D.: Structure and duality for time varying linear retarded equations. J. Differ. Equ. 78, 320–353 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Delfour, M.C.: State theory of linear hereditary differential systems. J. Differ. Equ. 60, 8–35 (1977)

    MATH  MathSciNet  Google Scholar 

  22. Delfour, M.C.: The largest class of hereditary systems defining a \(C_{0}\)-semigroup on the product space. Can. J. Math. 32, 466–490 (1980)

    Article  MathSciNet  Google Scholar 

  23. Delfour, M.C., Mitter, S.K.: Hereditary differential systems with constant delays. I. General case. J. Differ. Equ. 12, 213–235 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Delfour, M.C., Mitter, S.K.: Hereditary differential systems with constant delays. II. A class of affine systems and the adjoint problem. J. Differ. Equ. 18, 18–28 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Di Blasio, G.: Nonautonomous functional differential equations in Hilbert spaces. Nonlinear Anal. T.M.A. 9(12), 1367–1380 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dieci, L., Elia, C.: The singular value decomposition to approximate spectra of dynamical systems. J. Differ. Equ. 230(2), 502–531 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dieci, L., Van Vleck, E.S.: Lyapunov and other spectra: a survey. In: Estep, D.J., Taverner, S. (eds.) Collected lectures on the preservation of stability under discretization, pp. 197–218. SIAM, Philadelphia (2002)

  28. Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40(2), 516–542 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dieci, L., Van Vleck, E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101, 398–423 (2005)

    Article  Google Scholar 

  30. Dieci, L., Van Vleck, E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dyn. Differ. Equ. 15, 815–840 (2006)

    Article  Google Scholar 

  31. Dieci, L., Van Vleck, E.S.: Lyapunov and Sacker–Sell spectral intervals. J. Dyn. Differ. Equ. 19, 263–295 (2007)

    Article  Google Scholar 

  32. Dieci, L., Van Vleck, E.S.: On the error in QR integration. SIAM J. Numer. Anal. 46, 1166–1189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations—Functional, Complex and Nonlinear Analysis. No. 110 in AMS series. Springer, New York (1995)

    Google Scholar 

  34. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dyn. Differ. Equ. 3(1), 133–177 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Farmer, D.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D 4, 605–617 (1982)

    Google Scholar 

  36. Fattouh, A., Sename, O., Dion, J.M.: \(h_{\infty }\) controller and observer design for linear systems with point and distributed delays. In: 2nd IFAC workshop on Linear Time Delay Systems, Ancona, Italy (2000)

  37. Hadd, S., Rhandi, A., Schnaubelt, R.: Feedback theory for time-varying regular linear systems with input and state delays. IMA J. Math. Control Inf. 25(1), 85–110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hale, J.K., Verduyn Lunel, S.M.: Introduction to functional differential equations, 2nd edn. No. 99 in AMS series. Springer, New York (1993)

    Book  Google Scholar 

  39. Ichikawa, A.: Quadratic control of evolution equations with delays in control. SIAM J. Control Optim. 20, 645–668 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 61, 117–141 (2004)

    Article  MATH  Google Scholar 

  41. Ito, K., Kappel, F.: A uniformly differentiable approximation scheme for delay systems using splines. Appl. Math. Opt. 23, 217–262 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kappel, F.: Semigroups and delay equations. No. 152 (Trieste, 1984) in Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1986)

  43. Krasovskii, N.: Stability of motion. Moscow (1959). English transl. Stanford University Press (1963)

  44. Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  45. Menosur, B., Lotgin, A.: Power spectra and dynamical invariants for delay-differential and difference equations. Phys. D 113, 1–25 (1998)

    Article  MathSciNet  Google Scholar 

  46. Menosur, B., Lotgin, A.: Synchronization of delay-differential equations with applications to private communication. Phys. Lett. A 244, 59–70 (1998)

    Article  Google Scholar 

  47. Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. English Transl. Trans. Mosc. Math. Soc. 19, 197–221 (1968)

    MATH  Google Scholar 

  48. Peichl, G.H.: A kind of “history space” for retarded functional differential equations and representation of solutions. Funkc. Ekvacioj-SER I 25, 245–256 (1982)

    MathSciNet  Google Scholar 

  49. Pliss, V.A., Sell, G.R.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 11(3), 471–513 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  50. Prasad, A.: Amplitude death in coupled chaotic oscillators. Phys. Rev. E 72(056), 204–10 (2005)

    Google Scholar 

  51. Ruelle, D.: Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math. 115, 243–290 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sacker, R.J., Sell, G.R.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113, 17–67 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Sell, G.R., You, Y.: Dynamics of evolutionary equations. No. 143 in Applied Mathematical Sciences. Springer, New York (2002)

    Google Scholar 

  54. Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Sigeti, D.E.: Exponential decay of power spectra at high frequency and positive Lyapunov exponents. Phys. D 82, 136–153 (1995)

    Article  MATH  Google Scholar 

  56. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366, 397–402 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Stefanski, A., Dabrowski, A., Kapitaniak, T.: Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. Chaos Solitons Fract. 23, 1651–1659 (2005)

    MATH  MathSciNet  Google Scholar 

  58. Van Vleck, E.S.: On the error in the product QR decompostion. SIAM J. Matrix Anal. Appl. 31(4), 1775–1791 (2010)

    Article  MATH  Google Scholar 

  59. Vinter, R.B.: On the evolution of the state of linear differential delay equations in \(M^{2}\): properties of the generator. J. Inst. Math. Appl. 21, 13–23 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  60. Wu, J.: Theory and applications of partial functional differential equations. No. 119 in AMS series. Springer, New York (1996)

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Luca Dieci at GeorgiaTech (USA) for stimulating discussions on the subject of Lyapunov exponents and Wei Zou at Humboldt University (Germany) for suggesting the problem treated in Test \(5\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Breda.

Additional information

The work of the first author was partially supported by the Italian National Scientific Computing Group grants “GNCS—Young Researchers” 2008 and 2009. The work of the second author was partially supported by NSF grants DMS-0812800 and DMS-1115408.

Appendix A

Appendix A

Besides the notation introduced in Sect. 3, we recall that \(G_{s}\) is defined in (11), \(V\) in (21) and \({\fancyscript{L}}_{N}^{+}\) is specified right before Proposition 1. We first recall in Theorem 4 basic approximation results from [15], namely (9.4.6) and (9.4.24), and then prove some technical lemmas which are used in Sect. 5.1.

Theorem 4

Let \(a<b\in \mathbb R \), \(L:=L^{2}(a,b;\mathbb R ^{d})\) and \(H^{k}:=H^{k}(a,b;\mathbb R ^{d})\), \(k\ge 1\) a positive integer. Given positive integers \(M\) and \(N\), if \(\varphi \in H^{k}\), then there exists a constant \(c_{F}\) independent of \(M\) s.t.

$$\begin{aligned} \Vert \varphi -F_{M}\varphi \Vert _{L}\le c_{F}M^{-k}\Vert \varphi \Vert _{H^{k}} \end{aligned}$$
(49)

where \(F_{M}\) is the Fourier projection operator w.r.t. the Legendre polynomials of \(L\) and a constant \(c_{{\fancyscript{L}}}\) independent of \(N\) s.t.

$$\begin{aligned} \Vert \varphi -{\fancyscript{L}}_{N}\varphi \Vert _{L}\le c_{{\fancyscript{L}}}N^{\frac{1}{2}}N^{-k}\Vert \varphi \Vert _{H^{k}} \end{aligned}$$
(50)

where \({\fancyscript{L}}_{N}\) is the interpolation operator w.r.t. the Legendre-Gauss zeros of \([a,b]\).

Lemma 4

\(\Vert V\Vert _{L^{\pm }\leftarrow L^{+}}\le r\).

Proof

Let \(y\in L^{+}\). Then

$$\begin{aligned} \Vert Vy\Vert _{L^{\pm }}\!=\!\int \limits _{-\tau }^{r}\left| (Vy)(t)\right| ^{2}dt \!=\!\!\!\int \limits _{0}^{r}\left| \int \limits _{0}^{t}y(\sigma )d\sigma \right| ^{2}dt \!\le \!\int \limits _{0}^{r}\left( \int \limits _{0}^{r}\left| y(\sigma )\right| ^{2}d \sigma \right) dt\!=\!r\Vert y\Vert _{L^{+}}. \end{aligned}$$

\(\square \)

Lemma 5

\((I_{L^{+}}-G_{s}V)^{-1}\in {\fancyscript{B}}(L^{+})\).

Proof

The assertion corresponds to proving that for any given \(h\in L^{+}\) there exists a unique \(f\in L^{+}\) solution of \((I_{L^{+}}-G_{s}V)f=h\). This in turn corresponds to the existence and uniqueness of the solution \(y\) to the IVP

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle y^{\prime }(t)=(G_{s}y)(t)+h(t), &{}\quad \text{ a.e. } \text{ for } t\in [0,r],\\ \displaystyle y(0)=0, &{}\\ \displaystyle y(\theta )=0,&{}\quad \text{ a.e. } \text{ for } \theta \in [-\tau ,0). \end{array} \right. \end{aligned}$$

The latter follows from standard results on RFDEs, see e.g. [25].\(\square \)

Lemma 6

Assume \(G_{s}:H^{1,\pm }\rightarrow H^{1,+}\). Then \(\left\| (I_{L^{+}}-{\fancyscript{L}}_{N}^{+})G_{s}V\right\| _{L^{+}}\rightarrow 0\) as \(N\rightarrow \infty \).

Proof

Let \(y\in L^{+}\). Then (21) implies \(Vy\in H^{1,\pm }\) and, by the hypothesis, \(G_{s}Vy\in H^{1,+}\). Now apply (50) in Theorem 4.\(\square \)

Lemma 7

Assume \(G_{s}:H^{1,\pm }\rightarrow H^{1,+}\). Then, for sufficiently large \(N\), \((I_{L^{+}}-{\fancyscript{L}}_{N}^{+}G_{s}V)^{-1}\in {\fancyscript{B}}(L^{+})\) and

$$\begin{aligned} \left\| (I_{L^{+}}-{\fancyscript{L}}_{N}^{+}G_{s}V)^{-1}\right\| _{L^{+}} \le 2\left\| (I_{L^{+}}-G_{s}V)^{-1}\right\| _{L^{+}}. \end{aligned}$$

Proof

The thesis follows by applying the Banach’s Perturbation Lemma, Lemmas 5 and 6 since \(I_{L^{+}}-{\fancyscript{L}}_{N}^{+}G_{s}V=(I_{L^{+}}-G_{s}V)+(I_{L^{+}} -{\fancyscript{L}}_{N}^{+})G_{s}V\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breda, D., Van Vleck, E. Approximating Lyapunov exponents and Sacker–Sell spectrum for retarded functional differential equations. Numer. Math. 126, 225–257 (2014). https://doi.org/10.1007/s00211-013-0565-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0565-1

Mathematics Subject Classification (2000)

Navigation