Skip to main content
Log in

Low rank methods for a class of generalized Lyapunov equations and related issues

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study possible low rank solution methods for generalized Lyapunov equations arising in bilinear and stochastic control. We show that under certain assumptions one can expect a strong singular value decay in the solution matrix allowing for low rank approximations. Since the theoretical tools strongly make use of a connection to the standard linear Lyapunov equation, we can even extend the result to the \(d\)-dimensional case described by a tensorized linear system of equations. We further provide some reasonable extensions of some of the most frequently used linear low rank solution techniques such as the alternating directions implicit (ADI) iteration and the Krylov-Plus-Inverted-Krylov (K-PIK) method. By means of some standard numerical examples used in the area of bilinear model order reduction, we will show the efficiency of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antoulas, A., Sorensen, D., Zhou, Y.: On the decay rate of Hankel singular values and related issues. Syst. Control Lett. 46(5), 323–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckermann, B.: An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM J. Numer. Anal. 49, 2430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner, P., Breiten, T.: On \({H}_{2}\)-model reduction of linear parameter-varying systems. Proc. Appl. Math. Mech. 11(1), 805–806 (2011). doi: 10.1002/pamm.201110391

  4. Benner, P., Breiten, T.: On optimality of interpolation-based low-rank approximations of large-scale matrix equations. MPI Magdeburg Preprints MPIMD/11-10 (2011). Available from http://www.mpi-magdeburg.mpg.de/preprints/abstract.php?nr=11-10&year=2011

  5. Benner, P., Breiten, T.: Interpolation-based \({H}_{2}\)-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012)

  6. Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15(9), 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Li, R., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Saak, J.: Linear-quadratic regulator design for optimal cooling of steel profiles. Tech. Rep. SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik, TU Chemnitz, 09107 Chemnitz, FRG (2005). Available from http://www.tu-chemnitz.de/sfb393

  10. Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems. COMPEL 26, 11–26 (2007)

    Article  MathSciNet  Google Scholar 

  11. D’Alessandro, P., Isidori, A., Ruberti, A.: Realization and structure theory of bilinear dynamical systems. SIAM J. Control Optim. 12(3), 517–535 (1974)

    Google Scholar 

  12. Damm, T.: Rational Matrix Equations in Stochastic Control, vol. 297. Springer, Berlin (2004)

    MATH  Google Scholar 

  13. Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations. Numer. Linear Algebra Appl. 15(9), 853–871 (2008)

    Google Scholar 

  14. Dorissen, H.: Canonical forms for bilinear systems. Syst. Control Lett. 13(2), 153–160 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eppler, A.K., Bollhöfer, M.: An alternative way of solving large Lyapunov equations. Proc. Appl. Math. Mech. 10(1), 547–548. doi:10.1002/pamm.201010266

  18. Eppler, A., Bollhöfer, M.: A structure preserving FGMRES method for solving large Lyapunov equations. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010, Mathematics in Industry, vol. 17, pp. 131–136. Springer, Berlin (2012). doi:10.1007/978-3-642-25100-9-15

  19. Flagg, G.M., Gugercin, S.: On the ADI method for the Sylvester equation and the optimal-H2 points. Appl. Numer. Math. 64, 50–58 (2013). doi:10.1016/j.apnum.2012.10.001

    Google Scholar 

  20. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72(3–4), 247–265 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Grasedyck, L.: Existence of a low rank or \(\cal {H}\)-matrix approximant to the solution of a sylvester equation. Numer. Linear Algebra Appl. 11(4), 371–389 (2004). doi:10.1002/nla.366

  22. Gray, W., Mesko, J.: Energy functions and algebraic Gramians for bilinear systems. In: Preprints of the 4th IFAC Nonlinear Control Systems Design, Symposium, pp. 103–108 (1998)

  23. Gugercin, S., Antoulas, A., Beattie, S.: \({H}_{2}\) model reduction for large-scale dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)

    Google Scholar 

  24. Hartmann, C., Zueva, A., Schäfer-Bung, B.: Balanced model reduction of bilinear systems with applications to positive systems (2010) (Submitted)

  25. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  26. Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jbilou, K., Riquet, A.J.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415(2–3), 344–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). doi:10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  29. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems. CMAM 11(3), 363–381 (2011)

    Article  MathSciNet  Google Scholar 

  32. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  33. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40(2), 139–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rugh, W.: Nonlinear System Theory. The Johns Hopkins University Press, Baltimore (1982)

    Google Scholar 

  35. Saad, Y.: Numerical solution of large Lyapunov equation. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Signal Processing, Scattering, Operator Theory and Numerical Methods, pp. 503–511. Birkhauser, Basel (1990)

    Google Scholar 

  36. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sorensen, D., Zhou, Y.: Bounds on eigenvalue decay rates and sensitivity of solutions to Lyapunov equations. Tech. Rep. TR02-07, Dept. of Comp. Appl. Math., Rice University, Houston, TX (2002). Available online from http://www.caam.rice.edu/caam/trs/tr02.html#TR02

  38. Stenger, F.: Numerical methods based on Sinc and analytic functions. In: Springer Series in Computational Mathematics, vol. 20. Springer, New York (1993)

  39. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)

    Article  MathSciNet  Google Scholar 

  40. Wachspress, E.: The ADI model problem (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Breiten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Breiten, T. Low rank methods for a class of generalized Lyapunov equations and related issues. Numer. Math. 124, 441–470 (2013). https://doi.org/10.1007/s00211-013-0521-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0521-0

Mathematics Subject Classification (2000)

Navigation