Skip to main content
Log in

Iterative methods for the solution of a singular control formulation of a GMWB pricing problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Discretized singular control problems in finance result in highly nonlinear algebraic equations which must be solved at each timestep. We consider a singular stochastic control problem arising in pricing a guaranteed minimum withdrawal benefit (GMWB), where the underlying asset is assumed to follow a jump diffusion process. We use a scaled direct control formulation of the singular control problem and examine the conditions required to ensure that a fast fixed point policy iteration scheme converges. Our methods take advantage of the special structure of the GMWB problem in order to obtain a rapidly convergent iteration. The direct control method has a scaling parameter which must be set by the user. We give estimates for bounds on the scaling parameter so that convergence can be expected in the presence of round-off error. Example computations verify that these estimates are of the correct order. Finally, we compare the scaled direct control formulation to a formulation based on a block version of the penalty method (Huang and Forsyth in IMA J Numer Anal 32:320–351, 2012). We show that the scaled direct control method has some advantages over the penalty method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen L., Andreasen J.: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Derivatives Res. 4, 231–262 (2000)

    Article  Google Scholar 

  2. Barles G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds) Numerical Methods in Finance, pp. 1–21. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  3. Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear equations. Asymptotic Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bertsekas D.P., Tsitsiklis J.: Neuro-Dynamic Programming. Athena, Massachusetts (1996)

    MATH  Google Scholar 

  5. Bokanowski O., Maroso S., Zidani H.: Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47, 3001–3026 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Budhriaja A., Ross K.: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim. 45, 2169–2206 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen Z., Forsyth P.A.: A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Numer. Math. 109, 535–569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Z., Vetzal K., Forsyth P.A.: The effect of modelling parameters on the value of GMWB guarantees. Insur. Math. Econ. 43, 165–173 (2008)

    Article  MATH  Google Scholar 

  9. Cont R., Tankov P.: Financial Modelling with Jump Processes. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  10. Dai M., Kwok Y.K., Zong J.: Guaranteed minimum withdrawal benefit in variable annuities. Math. Finance 18, 595–611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. d’Halluin Y., Forsyth P.A., Vetzal K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forsyth P.A., Labahn G.: Numerical methods for controlled Hamilton–Jacobi–Bellman PDEs in finance. J. Comput. Finance 11(Winter), 1–44 (2008)

    Google Scholar 

  13. Hindy A., Huang C., Zhu S.: Numerical analysis of a free boundary singular control problem in financial economics. J. Econ. Dyn. Control 21, 297–327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Y.: Numerical methods for pricing a guaranteed minimum withdrawal benefit (GMWB) as a singular control problem. PhD thesis, School of Computer Science, University of Waterloo (2011)

  15. Huang Y., Forsyth P.A.: Analysis of a penalty method for pricing a guaranteed minimum withdrawal benefit (GMWB). IMA J. Numer. Anal. 32, 320–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point policy iteration for HJB equations in finance. Working paper, University of Waterloo (submitted to SIAM J. Numer. Anal.) (2010)

  17. Kennedy J.S., Forsyth P.A., Vetzal K.R.: Dynamic hedging under jump diffusion with transaction costs. Oper. Res. 57, 541–559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar S., Mithiraman K.: A numerical method for solving singular stochastic control problems. Oper. Res. 52, 563–582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kushner H.J., Dupuis P.G: Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, New York (1991)

    Google Scholar 

  20. Merton R.C.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  21. Milevsky M.A., Salisbury T.S.: Financial valuation of guaranteed minimum withdrawal benefits. Insur. Math. Econ. 38, 21–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Munos, R.: Error bounds for approximate policy iteration. In: Proceedings of the 20th international congress on machine learning, pp. 560–567. Washington (2003)

  23. Pham H.: On some recent aspects of stochastic control and their applications. Probability Surv. 2, 506–549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pooley D.M., Forsyth P.A., Vetzal K.R.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23, 241–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stoer J., Bulirsch R.: Introduction to Numerical Analysis. 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  26. Tourin A., Zariphopoulou T. : Viscosity solutions and numerical schemes for investment/consumption models with transaction costs. In: Rogers, L.C.G., Talay, D. (eds) Numerical Methods in Finance, Cambridge University Press, Cambridge (1997)

    Google Scholar 

  27. Varga R.: Matrix Iterative Analysis. Prentice Hall, New Jersey (1961)

    Google Scholar 

  28. Wang I.R., Wan J.W.I., Forsyth P.A.: Robust numerical valuation of European and American options under the CGMY proces. J. Comput. Finance 10(4 Summer), 86–115 (2007)

    Google Scholar 

  29. Wang J., Forsyth P.A.: Maximal use of central differencing for Hamilton–Jacobi–Bellman PDEs in finance. SIAM J. Numer. Anal. 46, 1580–1601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Forsyth.

Additional information

This work was supported by Credit Suisse, New York and the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Forsyth, P.A. & Labahn, G. Iterative methods for the solution of a singular control formulation of a GMWB pricing problem. Numer. Math. 122, 133–167 (2012). https://doi.org/10.1007/s00211-012-0455-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0455-y

Mathematics Subject Classification (2000)

Navigation