Skip to main content
Log in

Some estimates for hpk-refinement in Isogeometric Analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we propose a theoretical study of the approximation properties of NURBS spaces, which are used in Isogeometric Analysis. We obtain error estimates that are explicit in terms of the mesh-size h, the degree p and the global regularity, measured by the parameter k. Our approach covers the approximation with global regularity from C 0 up to C k–1, with 2k − 1 ≤ p. Notice that the interesting case of higher regularity, up to k = p, is still open. However, our results give an indication of the role of the smoothness k in the approximation properties, and offer a first mathematical justification of the potential of Isogeometric Analysis based on globally smooth NURBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auricchio F., Beirão da Veiga L., Buffa A., Lovadina C., Reali A., Sangalli G.: A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)

    Article  MATH  Google Scholar 

  2. Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A.: The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Eng. (2010). doi:10.1016/j.cma.2008.06.004

    Google Scholar 

  3. Bazilevs Y., Beirão da Veiga L., Cottrell J.A., Hughes T.J.R., Sangalli G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs Y., Calo V.M., Cottrell J.A., Hughes T.J.R., Reali A., Scovazzi G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Meth. Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: Isogeometric Shell Analysis: The Reissner-Mindlin Shell. ICES Technical Report 09–05 (2009)

  6. Ciarlet P.G., Raviart P.-A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Meth. Appl. Mech. Eng. 1, 217–249 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottrell J.A., Reali A., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of structural vibrations. Comput. Meth. Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottrell J.A., Hughes T.J.R., Reali A.: Studies of refinement and continuity in isogeometric structural analysis. Comput. Meth. Appl. Mech. Eng. 196, 4160–4183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Boor, C.: A practical guide to splines. In: Applied Mathematical Sciences, vol. 27, revised edn. Springer, New York (2001)

  10. Davis P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  11. Dubeau F., Savoie J.: Best error bounds for odd and even degree deficient splines. SIAM J. Numer. Anal. 34(3), 1167–1184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, J., Bazilevs, Y., Babuska, I., Hughes, T.: N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. (2010)

  13. Farin G.E.: NURBS Curves and Surfaces: From Projective Geometry to Practical Use. A. K. Peters, Ltd., Natick (1995)

    Google Scholar 

  14. Gómez H., Calo V.M., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)

    Article  MATH  Google Scholar 

  15. Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes T.J.R., Reali A., Sangalli G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197, 4104–4124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness Of Isogeometric Structural Discretizations Under Severe Mesh Distortion, ICES Technical Report 09-06 (2009)

  18. Schumaker, L.L.: Spline functions: basic theory, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2007)

  19. Schwab C.: p- and hp- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)

    Google Scholar 

  20. Waldron S.: L p error bounds for Hermite interpolation and the associated Wirtinger inequalities. Constr. Approx. 13(4), 461–479 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sangalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão da Veiga, L., Buffa, A., Rivas, J. et al. Some estimates for hpk-refinement in Isogeometric Analysis. Numer. Math. 118, 271–305 (2011). https://doi.org/10.1007/s00211-010-0338-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0338-z

Mathematics Subject Classification (2000)

Navigation