Skip to main content

Advertisement

Log in

Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abraham NG, Lutton JD, Levere RD (1985) Heme metabolism and erythropoiesis in abnormal iron states: role of δ-aminolevulinic acid synthase and heme oxygenase. Exp Hematol 13:838–843

    CAS  PubMed  Google Scholar 

  • Aguiar CC, Almeida AB, Araújo PV, Vasconcelos GS, Chaves EM, do Vale OC, Macêdo DS, Leal LK, de Barros Viana GS, Vasconcelos SM (2013) Effects of agomelatine on oxidative stress in the brain of mice after chemically induced seizures. Cell Mol Neurobiol 33:825–835

    PubMed  Google Scholar 

  • Alam SI, Kim MW, Shah FA, Saeed K, Ullah R, Kim MO (2021) Alpha-linolenic acid impedes cadmium-induced oxidative stress, neuroinflammation, and neurodegeneration in mouse brain. Cells 10:2274

  • Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, Siddiq Abduh M, Bin-Ammar A, Kamel EM, Mahmoud AM (2023) The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int Immunopharmacol 124:110833

  • Ashizawa A, Faroon O, Ingerman L, Jenkins K, Tucker P, Wright S (2012) Toxicological profile for cadmium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta

  • Bakr AG, Hassanein EHM, Ali FEM, El-Shoura EAM (2022) Combined apocynin and carvedilol protect against cadmium-induced testicular damage via modulation of inflammatory response and redox-sensitive pathways. Life Sci 311:121152

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:557–564

    CAS  PubMed  Google Scholar 

  • Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, Schormann W, Maccoux LJ, Schug M, Schumann A, Wilhelm C, Freis E, Ickstadt K, Rahnenführer J, Baumbach JI, Sickmann A, Hengstler JG (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res 12:R44

    PubMed  PubMed Central  Google Scholar 

  • Cankara FN, Günaydın C, Çelik ZB, Şahin Y, Pekgöz Ş, Erzurumlu Y, Gülle K (2021) Agomelatine confers neuroprotection against cisplatin-induced hippocampal neurotoxicity. Metab Brain Dis 36:339–349

    CAS  PubMed  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179

    CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  PubMed  Google Scholar 

  • de Lima EC, de Moura CFG, Silva MJD, Vilegas W, Santamarina AB, Pisani LP, de Oliveira F, Ribeiro DA (2020) Therapeutical properties of Mimosa caesalpiniifolia in rat liver intoxicated with cadmium. Environ Sci Pollut Res Int 27:10981–10989

    PubMed  Google Scholar 

  • de Souza PF, Diamante MA, Dolder H (2010) Testis response to low doses of cadmium in Wistar rats. Int J Exp Pathol 91:125–131

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Eraslan E, Tanyeli A, Güler MC, Kurt N, Yetim Z (2020) Agomelatine prevents indomethacin-induced gastric ulcer in rats. Pharmacol Rep 72:984–991

    CAS  PubMed  Google Scholar 

  • Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C (2019) FOXO3a from the nucleus to the mitochondria: a round trip in cellular stress response. Cells 8:1110

  • Fulcher K, Gibb H (2014) Setting the research agenda on the health effects of chemicals. Int J Environ Res Public Health 11:1049–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25:162–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514

    PubMed  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    CAS  PubMed  Google Scholar 

  • Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    CAS  PubMed  Google Scholar 

  • Handan BA, De Moura CFG, Cardoso CM, Santamarina AB, Pisani LP, Ribeiro DA (2020) Protective effect of grape and apple juices against cadmium intoxication in the kidney of rats. Drug Research 70:503–511

    CAS  PubMed  Google Scholar 

  • Hassanein EHM, Sayed AM, Hussein OE, Mahmoud AM (2020) Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxid Med Cell Longev 2020:1675957

    PubMed  PubMed Central  Google Scholar 

  • Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass E-S, Soliman HA, Farghali AA (2019) Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 109:2527–2538

    CAS  PubMed  Google Scholar 

  • Ikediobi CO, Badisa VL, Ayuk-Takem LT, Latinwo LM, West J (2004) Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med 14:87–92

    CAS  PubMed  Google Scholar 

  • Kamel MY, Ahmed SM, Abdelzaher WY, Welson NN, Abdel-Aziz AM (2022) Role of IL-6/STAT3 pathway in mediating the protective effect of agomelatine against methotrexate-induced lung/intestinal tissues damage in rats. Immunopharmacol Immunotoxicol 44:35–46

    CAS  PubMed  Google Scholar 

  • Kato K, Hecker L (2020) NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 33:101541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keen JH, Habig WH, Jakoby WB (1976) Mechanism for the several activities of the glutathione S-transferases. J Biol Chem 251:6183–6188

    CAS  PubMed  Google Scholar 

  • Köse D, Yüksel TN, Halıcı Z, Çadırcı E, Gürbüz MA (2021) The effects of agomelatine treatment on lipopolysaccharide-induced septic lung injuries in rats. Eurasian J Med 53:127–131

    PubMed  PubMed Central  Google Scholar 

  • Larson-Casey JL, Gu L, Fiehn O, Carter AB (2020) Cadmium-mediated lung injury is exacerbated by the persistence of classically activated macrophages. J Biol Chem 295:15754–15766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence RA, Burk RFJB, communications br (1976) Glutathione peroxidase activity in selenium-deficient rat liver. 71: 952-958

  • Lee IT, Yang CM (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 84:581–590

    CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Xin Y, Sun J, Xie F, Yang L, Chen Z, Chen H, Liu F, Xuan YJSR (2018) Role of Quzhou Fructus Aurantii extract in preventing and treating acute lung injury and inflammation. 8: 1-11

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (san Diego, Calif) 25:402–408

    CAS  PubMed  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    CAS  PubMed  Google Scholar 

  • Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12:7

    PubMed  PubMed Central  Google Scholar 

  • Mahlooji MA, Heshmati A, Kheiripour N, Ghasemi H, Asl SS, Solgi G, Ranjbar A, Hosseini A (2022) Evaluation of protective effects of curcumin and nanocurcumin on aluminium phosphide-induced subacute lung injury in rats: modulation of oxidative stress through SIRT1/FOXO3 signalling pathway. Drug Res (stuttg) 72:100–108

    CAS  PubMed  Google Scholar 

  • Mahmoud AM, Abd El-Ghafar OAM, Alzoghaibi MA, Hassanein EHM (2021) Agomelatine prevents gentamicin nephrotoxicity by attenuating oxidative stress and TLR-4 signaling, and upregulating PPARγ and SIRT1. Life Sci 278:119600

    CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  PubMed  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    CAS  PubMed  Google Scholar 

  • Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE (2002) Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura City, Nile Delta. Egypt Environ Res 90:104–110

    CAS  PubMed  Google Scholar 

  • Olmos Y, Sanchez-Gomez FJ, Wild B, Garcia-Quintans N, Cabezudo S, Lamas S, Monsalve M (2013) SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signal 19:1507–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas RS (2011) Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization. Metallomics : Integr Biometal Sci 3:1181–1198

    CAS  Google Scholar 

  • Paulis L, Simko F, Laudon M (2012) Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs 21:1661–1678

    CAS  PubMed  Google Scholar 

  • Pinheiro Júnior JEG, Moraes PZ, Rodriguez MD, Simões MR, Cibin F, Pinton S, Barbosa Junior F, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA (2020) Cadmium exposure activates NADPH oxidase, renin-angiotensin system and cyclooxygenase 2 pathways in arteries, inducing hypertension and vascular damage. Toxicol Lett 333:80–89

    PubMed  Google Scholar 

  • Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8:135–145

    PubMed  PubMed Central  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    CAS  PubMed  Google Scholar 

  • Reed JC, Doctor KS, Godzik A (2004) The domains of apoptosis: a genomics perspective. Sci STKE 2004(239):re9

  • Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PCJB, reports b (2016) Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. 5: 313-327

  • Sarkar A, Ravindran G, Krishnamurthy V (2013) A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Biotechnol Res 3:17–36

    Google Scholar 

  • Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxid Med Cell Longev 2017:9237263

    PubMed  PubMed Central  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    CAS  PubMed  Google Scholar 

  • Sayed AM, Hassanein EHM, Salem SH, Hussein OE, Mahmoud AM (2020) Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 259:118173

    CAS  PubMed  Google Scholar 

  • Shi Y, Chen J, Weng C, Chen R, Zheng Y, Chen Q, Tang H (2003) Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochem Biophys Res Commun 305:989–996

    CAS  PubMed  Google Scholar 

  • Shore GC, Nguyen M (2008) Bcl-2 proteins and apoptosis: choose your partner. Cell 135:1004–1006

    CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  • Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N (2018) The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28:643–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siow RC, Sato H, GE Mann (1999) Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res 41(2):385–94

    CAS  PubMed  Google Scholar 

  • Suvarna SK, Layton C, Bancroft JD (2013) Bancroft’s theory and practice of histological techniques. Churchill Livingstone Elsevier, [Oxford]

  • Thomsen ND, Koerber JT, Wells JA (2013) Structural snapshots reveal distinct mechanisms of procaspase-3 and-7 activation. Proc Natl Acad Sci 110:8477–8482

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochem Biophys Acta 1813:1938–1945

    CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    CAS  PubMed  Google Scholar 

  • Yigitturk G, Acara AC, Erbas O, Oltulu F, Yavasoglu NUK, Uysal A, Yavasoglu A (2017) The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes. Biomed Pharmacother 87:240–246

    CAS  PubMed  Google Scholar 

  • Yucetas CS, Ucler N, Cakir T (2019) The effects of agomelatine on the biochemical and pathological features of cisplatin-induced peripheral neuropathy: the first experimental study in rats. Turk Neurosurg 29:901–908

    PubMed  Google Scholar 

  • Zhang F, Li ZL, Xu XM, Hu Y, Yao JH, Xu W, Jing HR, Wang S, Ning SL, Tian XF (2015) Protective effects of icariin-mediated SIRT1/FOXO3 signaling pathway on intestinal ischemia/reperfusion-induced acute lung injury. Mol Med Rep 11:269–276

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Grailer JJ, Wang N, Wang M, Yao J, Zhong R, Gao GF, Ward PA, Tan DX, Li X (2016) Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 60:405–414

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R381), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R381), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Author contribution Conceptualization: A.M.M., and E.M.H.; Methodology: R.S.A., M.N.B-J., E.M.H., and A.M.M.; Data curation: R.S.A., E.M.H., and A.M.M.; Formal analysis: E.M.H., and A.M.M.; Investigation: R.S.A., E.M.H., and A.M.M.; Resources: R.S.A., M.N.B-J., E.M.H., and A.M.M.; Validation: A.M.M.; Writing—original draft preparation: R.S.A., E.M.H., and A.M.M.; writing—review and editing: A.M.M.; Funding acquisition: R.S.A. All authors have read and agreed to the final version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Ayman M. Mahmoud.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alruhaimi, R.S., Hassanein, E.H.M., Bin-Jumah, M.N. et al. Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine. Naunyn-Schmiedeberg's Arch Pharmacol 397, 2335–2345 (2024). https://doi.org/10.1007/s00210-023-02754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02754-5

Keywords

Navigation