Skip to main content
Log in

Regulatory mechanisms of Gentiopicroside on human diseases: a brief review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Gentiopicroside (GPS), a single compound isolated from Gentiana lutea L. and the crucial representative of secoiridoid constituent, has been permitted for centuries in traditional Chinese medicine. GPS and its metabolites have been increasingly used in the search for clinical management with therapeutic properties and fewer side effects. The objective of this review was to provide a comprehensive overview of the involvement of molecular pathways in the therapeutic effects of GPS on human diseases and chronic conditions. This study presents a meticulously conducted comprehensive search of the PubMed and Google Scholar databases (from 1983 to 2023), aimed at identifying articles relating to regulatory mechanisms of GPS on human diseases and the pharmacokinetics of GPS. The inclusion criteria were meticulously and precisely defined to encompass original research papers that explicitly focused on elucidating the regulatory mechanisms of GPS in various human diseases through in vitro and animal studies. Notably, these studies were mandated to integrate specific genetic markers or pathways as essential components of their research inquiries. The evaluated pharmacokinetic parameters included maximum plasma concentration (Cmax), time to reach maximum plasma concentration (Tmax), area under the curve (AUC), clearance, and plasma half-life (t1/2). Subsequently, through a rigorous screening process of titles and abstracts, studies conducted in vitro or on animals, as well as those reporting pharmacokinetic data related to drugs other than GPS or language barriers, were systematically excluded. Drawing from the data and studies pertaining to this review, we conducted a thorough and informative analysis of the pharmacological characteristics and biological functions of GPS. These encompassed a wide range of effects, including hepatoprotective, anti-inflammatory, antifibrotic, antioxidant, analgesic, antitumor, and immunomodulatory properties. The analysis provided a comprehensive and insightful understanding of GPS’s pharmacological profile and its diverse activities. Enhancing theoretical and experimental methodologies could prove advantageous in expanding the clinical applications of GPS. This could involve optimizing the bioavailability and pharmacokinetics of GPS, uncovering additional biomarkers and potential biotransformation pathways, and investigating its combined effects with standard-of-care medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

This review is a concise presentation of a proposed hypothesis, and therefore, no scientific or experimental data was presented.

Abbreviations

AA:

Adjuvant-induced arthritis

ALD:

Alcoholic liver damage

ALDH1L1:

Aldehyde dehydrogenase family 1-member L1

ANCC:

Anterior cingulate cortex

ANIT:

Alpha-naphthylisothiocyanate

ARA:

Arachidonic acid

ASC:

Apoptosis-associated speck-like protein containing

AT1R:

Angiotensin II type 1 receptor

ATP:

Adenosine triphosphate

AUC:

Area under the curve

BALF:

Bronchoalveolar lavage fluid

Bas:

Bile acids

BDNF:

Brain-derived neurotrophic factor

BMSCs:

Bone mesenchymal stem cells

BUN:

Blood urea nitrogen

CAT:

Catalase

CC:

Cervical cancer

CF:

Cardiac fibrosis

CFs:

Cardiac fibroblasts

CIA:

Collagen-induced arthritis

CK2:

Creatine Kinase 2

CL:

Clearance

C max :

Maximum plasma concentration

CNS:

Central nervous system

CoA:

Coenzyme A

COX-2:

Cyclooxygenase-2

Cr:

Creatinine

CRP:

C-reactive protein

CTGF:

Connective tissue growth factor

Cyp7a1:

Cholesterol 7-alpha hydroxy-lase

DA:

Dopamine

DDB2:

DNA-binding protein 2

Dex:

Dexamethasone

DN:

Diabetic nephropathy

DPN:

Diabetic peripheral neuropathy

EF:

Ejection fraction

EMMPRIN:

MMP inducer

EMT:

Epithelial-mesenchymal transition

EPSCs:

Excitatory postsynaptic currents

ERK:

Extracellular signal-regulated kinase

FBG:

Fasting blood glucose

FFA:

Free fatty acid

FN:

Fibronectin

FS:

Fraction shortening

GCLM:

Glutamate-cysteine ligase regulatory subunit

GFP:

Green fluorescent protein

GPS:

Gentiopicroside

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

GSP:

Glycated serum protein

HbA1c:

Hemoglobin A1c

HFLS:

Human fibroblast-like synoviocytes

HG:

High glucose

HO-1:

Heme oxygenase-1

Hyp:

Hydroxyproline

IFN:

Interferon

IgE:

Immunoglobulin E

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

JNK:

Jun N-terminal kinase

LDL-C:

Low-density lipoprotein cholesterol

LEF:

Leflunomide

LVIDd:

Left ventricular diastolic dimension

LVIDs:

Left ventricular internal diameter systole

MAPK:

Mitogen-activated protein kinase

MAPKs:

Mitogen-activated protein kinases

MDA:

Malondialdehyde

MIC:

Minimum inhibitory concentration

MMP:

Matrix metallopeptidase

MPO:

Myeloperoxidase

Mrp4:

Multidrug resistance protein 4

MTX:

Methotrexate

NAFLD:

Nonalcoholic fatty liver disease

NCV:

Nerve conduction velocity

NE:

Norepinephrine

NF-κB:

Nuclear factor kappa B

NLRP3:

NOD-like receptor protein 3

NMDAR:

N-Methyl-Daspartate Receptors

NO:

Nitric oxide

NQO1:

NAD(P)H:quinone oxidoreductase 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

OCN:

Osteocalcin

OPN:

Osteopontin

OSX:

Osterix

OVA:

Ovalbumin

OVX:

Ovariectomized

PA:

Palmitic acid

PAQR3:

AdipoQ receptor 3

PCA:

Principal component analysis

PCNA:

Proliferating cell nuclear antigen

PCO:

Protein carbonyl

PE:

Phenylephrine

PGE2:

Prostaglandin E2

PF:

Pulmonary fibrosis

PPARα:

Peroxisome proliferator-activated receptor α

RA:

Rheumatoid arthritis

RANKL:

Receptor activator of nuclear factor kappa B ligand

RAS:

Renin-angiotensin system

RASMCs:

Rat aortic smooth muscle cells

Runx2:

Runt-related transcription factor 2

SIRT1:

Silent information regulator 1

SNCV:

Sensory nerve conduction velocity

SOD:

Superoxide dismutase

SRB:

Sulpharhodamine B

Src:

Serum creatinine

SREBP-1c:

Sterol regulatory element-binding protein-1c

t1/2 :

Half-life

T-αMCA:

Tauro-α-mouse cholic acid

T-ωMCA:

Tauro-ω mouse cholic acid

TBA:

Total bile acids

TBIL:

Total bilirubin

TC:

Total cholesterol

TCA:

Taurocholic acid

TAG:

Triacylglycerol

Th2:

T helper type 2

TIF:

Tubulointerstitial fibrosis

TIMP-1:

Tissue inhibitor of metal protease1

T max :

Time to reach maximum plasma concentration

TNF:

Tumor necrosis factor

TUDCA:

Tauroursodeoxycholic acid

Ty:

Tyloxapol

UDCA:

Ursodeoxycholic acid

Up:

24-H urine protein

VEGF:

Vascular endothelial growth factor

VSM:

Vascular smooth muscle

5-HT:

5-Hydroxytryptamine

α-SMA:

α-Smooth muscle actin

β-MCA:

β-Mouse cholic acid

ω-MCA:

ω-Mouse cholic acid

ΔΨm:

Mitochondrial membrane potential

References

  • Aberham A, Schwaiger S, Stuppner H, Ganzera M (2007) Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. Journal of pharmaceutical and biomedical analysis 45(3):437–442

    Article  PubMed  CAS  Google Scholar 

  • Annesley SJ, Fisher PR (2019) Mitochondria in Health and Disease. Cells 8(7):680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brahmachari G, Mondal S, Gangopadhyay A, Gorai D, Mukhopadhyay B, Saha S, Brahmachari AK (2004) Swertia (Gentianaceae): chemical and pharmacological aspects. Chem Biodivers 1(11):1627–1651

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Tian Y, Zhou D, Yang L, Liu TM, Liu ZG, Wang SW (2021) Gentiopicroside ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling. Int Immunopharmacol 90:107213

    Article  PubMed  CAS  Google Scholar 

  • Chang-Liao WL, Chien CF, Lin LC, Tsai TH (2012) Isolation of gentiopicroside from Gentianae Radix and its pharmacokinetics on liver ischemia/reperfusion rats. J Ethnopharmacol 141(2):668–673

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu JC, Zhang XN, Guo YY, Xu ZH, Cao W, Sun XL, Sun WJ, Zhao MG (2008) Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain. Neuropharmacology 54(8):1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Wang YY, Wang YX, Cheng MQ, Yin JB, Zhang X, Hong ZP (2018a) Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process. Biochem Biophys Res Commun 495(4):2396–2403

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Xie L, Kang R, Deng R, Xi Z, Sun D, Zhu J, Wang L (2018) Gentiopicroside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and JNK signaling pathways. Biomed Pharmacother = Biomedecine Pharmacotherapie 100:142–146

    Article  PubMed  CAS  Google Scholar 

  • Chi X, Zhang F, Gao Q, Xing R, Chen S (2021) A review on the ethnomedicinal usage, phytochemistry, and pharmacological properties of Gentianeae (Gentianaceae) in Tibetan medicine. Plants (basel, Switzerland) 10(11):2383

    PubMed  Google Scholar 

  • Chiba K, Yamazaki M, Kikuchi M, Kakuda R, Kikuchi M (2011) New physiological function of secoiridoids: neuritogenic activity in PC12h cells. J Nat Med 65(1):186–190

    Article  PubMed  CAS  Google Scholar 

  • China Pharmacopoeia committee (2010) The People’s Republic of China Pharmacopoeia (a). Chinese medical science and technology press, Beijing, p 253

    Google Scholar 

  • Choi RY, Nam SJ, Lee HI, Lee J, Leutou AS, Ri Ham J, Lee MK (2019) Gentiopicroside isolated from Gentiana scabra Bge. inhibits adipogenesis in 3T3-L1 cells and reduces body weight in diet-induced obese mice. Bioorg Med Chem Lett 29(14):1699–1704

    Article  PubMed  CAS  Google Scholar 

  • Dai YH, Wang M, Zhu YN, Wang LL, Ju JM, Zhang ZH (2016) [Effect of D-cellobiose on oral bioavailability of gentiopicroside]. Zhongguo Zhong Yao Za Zhi 41(10):1855–1859. Chinese. https://doi.org/10.4268/cjcmm20161015

  • Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Wang L, Yang Y, Sun W, Xie R, Liu X, Wang Q (2013) In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6. Drug Metab Pharmacokinet 28(4):339–344

    Article  PubMed  CAS  Google Scholar 

  • Deng YT, Wang XS, Zhao MG, Huang XX, Xu XL (2018) Gentiopicroside protects neurons from astrocyte-mediated inflammatory injuries by inhibition of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. NeuroReport 29(13):1114–1120

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140(6):935–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ekrem S, Mustafa A, Erdem Y, Shigeru I (2005) Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 76(11):1223–1238

    Article  Google Scholar 

  • El-Sedawy AI, Hattori M, Kobashi K, Namba T (1989) Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria. Chem Pharm Bull 37(9):2435–2437

    Article  CAS  Google Scholar 

  • Han H, Xu L, Xiong K, Zhang T, Wang Z (2018) Exploration of hepatoprotective effect of Gentiopicroside on alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats by comprehensive proteomic and metabolomic signatures. Cell Physiol Biochem 49(4):1304–1319

    Article  PubMed  CAS  Google Scholar 

  • He M, Hu C, Chen M, Gao Q, Li L, Tian W (2022) Effects of Gentiopicroside on activation of NLRP3 inflammasome in acute gouty arthritis mice induced by MSU. J Nat Med 76(1):178–187

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Wang H, Fu Y, Ma K, Ma X, Wang J (2021) Gentiopicroside inhibits cell growth and migration on cervical cancer via the reciprocal MAPK/Akt signaling pathways. Nutr Cancer 73(8):1459–1470

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Lin J, Yi W, Liu Q, Cao L, Yan Y, Fu A, Huang T, Lyu Y, Huang Q, Wang J (2020) Research on the potential mechanism of Gentiopicroside against gastric cancer based on network pharmacology. Drug Des Dev Ther 14:5109–5118

    Article  CAS  Google Scholar 

  • Jia N, Ma H, Zhang T, Wang L, Cui J, Zha Y, Ding Y, Wang J (2022) Gentiopicroside attenuates collagen-induced arthritis in mice via modulating the CD147/p38/NF-κB pathway. Int Immunopharmacol 108:108854

    Article  PubMed  CAS  Google Scholar 

  • Jiang RW, Wong KL, Chan YM, Xu HX, But PP, Shaw PC (2005) Isolation of iridoid and secoiridoid glycosides and comparative study on Radix gentianae and related adulterants by HPLC analysis. Phytochemistry 66(22):2674–2680

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Zhong J, Li W, Dong J, Xian CJ, Shen YK, Yao L, Wu Q, Wang L (2021a) Gentiopicroside promotes the osteogenesis of bone mesenchymal stem cells by modulation of β-catenin-BMP2 signalling pathway. J Cell Mol Med 25(23):10825–10836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang M, Cui BW, Wu YL, Nan JX, Lian LH (2021b) Genus Gentiana: a review on phytochemistry, pharmacology and molecular mechanism. J Ethnopharmacol 264:113391

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Feng H, Wang Y, Yan S, Shen B, Li Z, Qin H, Wang Q, Li J, Liu G (2020) Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation. Oxid Med Cell Longev 2020:2940746

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesavan R, Potunuru UR, Nastasijević BTA, Joksić G, Dixit M (2013) Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS ONE 8(4):e61393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kondo Y, Takano F, Hojo H (1994) Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med 60(5):414–416

    Article  PubMed  CAS  Google Scholar 

  • Kumarasamy Y, Nahar L, Sarker SD (2003) Bioactivity of gentiopicroside from the aerial parts of Centaurium erythraea. Fitoterapia 74(1–2):151–154

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yang C, Shen H (2019) Gentiopicroside exerts convincing antitumor effects in human ovarian carcinoma cells (SKOV3) by inducing cell cycle arrest, mitochondrial mediated apoptosis and inhibition of cell migration. J BUON 24(1):280–284

    PubMed  Google Scholar 

  • Lian LH, Wu YL, Wan Y, Li X, Xie WX, Nan JX (2010) Anti-apoptotic activity of gentiopicroside in D-galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. Chem Biol Interact 188(1):127–133

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, Zhao R, Li XS, Guo HJ, Tian Z, Zhang N, Gao GD, Zhao MG (2014) Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice. NeuroMol Med 16(2):350–359

    Article  CAS  Google Scholar 

  • Liu N, Li YX, Gong SS, Du J, Liu G, Jin SJ, Zhao CJ, Niu Y, Sun T, Yu JQ (2016) Antinociceptive effects of gentiopicroside on neuropathic pain induced by chronic constriction injury in mice: a behavioral and electrophysiological study. Can J Physiol Pharmacol 94(7):769–778

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Cheng L, Matsuura A, Xiang L, Qi J (2020) Gentiopicroside, a secoiridoid glycoside from Gentiana rigescens Franch, extends the lifespan of yeast via inducing mitophagy and antioxidative stress. Oxid Med Cell Longev 2020:9125752

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu CM, Lin LC, Tsai TH (2014) Determination and pharmacokinetic study of gentiopicroside, geniposide, baicalin, and swertiamarin in Chinese herbal formulae after oral administration in rats by LC-MS/MS. Molecules (basel, Switzerland) 19(12):21560–21578

    Article  PubMed  Google Scholar 

  • Lu Y, Yao J, Gong C, Wang B, Zhou P, Zhou S, Yao X (2018) Gentiopicroside ameliorates diabetic peripheral neuropathy by modulating PPAR- Γ/AMPK/ACC signaling pathway. Cell Physiol Biochem 50(2):585–596

    Article  PubMed  CAS  Google Scholar 

  • Lv J, Gu WL, Chen CX (2015) Effect of gentiopicroside on experimental acute pancreatitis induced by retrograde injection of sodium taurocholate into the biliopancreatic duct in rats. Fitoterapia 102:127–133

    Article  PubMed  CAS  Google Scholar 

  • Mihailović V, Mihailović M, Uskoković A, Arambašić J, Mišić D, Stanković V, Katanić J, Mladenović M, Solujić S, Matić S (2013) Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats. Food Chem Toxicol 52:83–90

    Article  PubMed  Google Scholar 

  • Mustafayeva K, Di Giorgio C, Elias R, Kerimov Y, Ollivier E, De Méo M (2010) DNA-damaging, mutagenic, and clastogenic activities of gentiopicroside isolated from Cephalaria kotschyi roots. J Nat Prod 73(2):99–103

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Zhao Z, Xu H, Chen S, Dorje G (2017) Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine. Curr Genet 63(2):241–252

    Article  PubMed  CAS  Google Scholar 

  • Niu YT, Zhao YP, Jiao YF, Zheng J, Yang WL, Zhou R, Niu Y, Sun T, Li YX, Yu JQ (2016) Protective effect of gentiopicroside against dextran sodium sulfate induced colitis in mice. Int Immunopharmacol 39:16–22

    Article  PubMed  CAS  Google Scholar 

  • Oztürk N, Herekman-Demir T, Oztürk Y, Bozan B, Başer KH (1998) Choleretic activity of Gentiana lutea ssp. symphyandra in rats. Phytomedicine 5(4):283–288

    Article  PubMed  Google Scholar 

  • Oztürk N, Başer KH, Aydin S, Oztürk Y, Caliş I (2002) Effects of Gentiana lutea ssp. symphyandra on the central nervous system in mice. Phytotherapy research: PTR 16(7):627–631

    Article  PubMed  Google Scholar 

  • Pan Y, Zhao YL, Zhang J, Li WY, Wang YZ (2016) Phytochemistry and pharmacological activities of the genus Gentiana (Gentianaceae). Chem Biodivers 13(2):107–150

    Article  PubMed  CAS  Google Scholar 

  • Pasdaran A, Butovska D, Kerr P, Naychov Z, Aneva I, Kozuharova E (2022) Gentians, natural remedies for the future of visceral pain control; an ethnopharmacological review with an in silico approach. Biol Futur 73(2):219–227. https://doi.org/10.1007/s42977-022-00114-7

  • Rojas A, Bah M, Rojas JI, Gutiérrez DM (2000) Smooth muscle relaxing activity of gentiopicroside isolated from Gentiana spathacea. Planta Med 66(8):765–767

    Article  PubMed  CAS  Google Scholar 

  • Ruan M, Yu B, Xu L, Zhang L, Long J, Shen X (2015) Attenuation of stress-induced gastrointestinal motility disorder by gentiopicroside, from Gentiana macrophylla Pall. Fitoterapia 103:265–276

    Article  PubMed  CAS  Google Scholar 

  • Savikin K, Menković N, Zdunić G, Stević T, Radanović D, Jankovićn T (2009) Antimicrobial activity of Gentiana lutea L. extracts Zeitschrift fur Naturforschung C. J Biosci 64(5–6):339–342

    CAS  Google Scholar 

  • Sheng N, Zhi X, Yuan L, Zhang Z, Jia P, Zhang X, Zhang L, Wang X (2014) Pharmacokinetic and excretion study of three secoiridoid glycosides and three flavonoid glycosides in rat by LC-MS/MS after oral administration of the Swertia pseudochinensis extract. J Chromatogr B, Anal Technol Biomed Life Sci 967:75–83

    Article  CAS  Google Scholar 

  • Shi M, Xiong K, Zhang T, Han H (2020) Pharmacokinetics and metabolic profiles of swertiamarin in rats by liquid chromatography combined with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 179:112997

    Article  PubMed  CAS  Google Scholar 

  • Skinder BM, Ganai BA, Wani AH (2017) Scientific study of Gentiana kurroo Royle. Medicines (basel, Switzerland) 4(4):74

    PubMed  Google Scholar 

  • Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N (2017) Evolution of the human nervous system function, structure, and development. Cell 170(2):226–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun JZ, Lv X, Xu SZ, Cai Q (2022) Determination and tissue distribution comparisons of gentiopicroside after oral administration of raw and wine-Processed Gentiana Radix. Pak J Pharm Sci 35(2):473–477

    PubMed  CAS  Google Scholar 

  • Talukdar S, Emdad L, Das SK, Sarkar D, Fisher PB (2016) Evolving strategies for therapeutically targeting cancer stem cells. Adv Cancer Res 131:159–191

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Yang Q, Yang F, Gong J, Han H, Yang L, Wang Z (2016) Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. J Ethnopharmacol 194:63–71

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Shi W, Zhang Q, Wang J (2023) Preparation, characterization, and in vivo evaluation of gentiopicroside-phospholipid complex (GTP-PC) and its self-nanoemulsion drug delivery system (GTP-PC-SNEDDS). Pharmaceuticals (basel, Switzerland) 16(1):99

    Article  PubMed  CAS  Google Scholar 

  • Van der Sluis WG, van der Nat JM, Spek AL, Ikeshiro Y, Labadie RP (1983) Gentiogenal, a conversion product of gentiopicrin (gentiopicroside)*. Planta Med 49(12):211–215

    Article  PubMed  Google Scholar 

  • Wan Z, Li H, Wu X, Zhao H, Wang R, Li M, Liu J, Liu Q, Wang R, Li X (2021) Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci 265:118689

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Wang ZT, Bligh SW, White KN, White CJ (2004) Pharmacokinetics and tissue distribution of gentiopicroside following oral and intravenous administration in mice. Eur J Drug Metab Pharmacokinet 29(3):199–203

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Cheng XM, Bligh SW, White KN, Branford-White CJ, Wang ZT (2007) Pharmacokinetics and bioavailability of gentiopicroside from decoctions of Gentianae and Longdan Xiegan Tang after oral administration in rats–comparison with gentiopicroside alone. J Pharm Biomed Anal 44(5):1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhou X, Yang L, Luo M, Han L, Lu Y, Shi Q, Wang Y, Liang Q (2019) Gentiopicroside (GENT) protects against sepsis induced by lipopolysaccharide (LPS) through the NF-κB signaling pathway. Ann Transl Med 7(23):731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Li H, Wang Y, Hao Y, Huang Y, Wang X, Lu Y, Du Y, Fu F, Xin W, Zhang L (2020) Anti-rheumatic properties of Gentiopicroside are associated with suppression of ROS-NF-κB-NLRP3 axis in fibroblast-like synoviocytes and NF-κB pathway in adjuvant-induced arthritis. Front Pharmacol 11:515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani BA, Ramamoorthy D, Rather MA, Arumugam N, Qazi AK, Majeed R, Hamid A, Ganie SA, Ganai BA, Anand R, Gupta AP (2013) Induction of apoptosis in human pancreatic MiaPaCa-2 cells through the loss of mitochondrial membrane potential (ΔΨm) by Gentiana kurroo root extract and LC-ESI-MS analysis of its principal constituents. Phytomedicine 20(8–9):723–733

    Article  PubMed  CAS  Google Scholar 

  • Webb RC (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27(1–4):201–206

    Article  PubMed  Google Scholar 

  • Wu S, Yang L, Sun W, Si L, Xiao S, Wang Q, Dechoux L, Thorimbert S, Sollogoub M, Zhou D, Zhang Y (2017) Design, synthesis and biological evaluation of gentiopicroside derivatives as potential antiviral inhibitors. Eur J Med Chem 130:308–319

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Sun X, Liu R, Chen Z, Lin Z, Yang Y, Zhang M, Liu P, Quan S, Huang H (2020) Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 151:104559

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z, Huang H (2022) Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharmaceutica Sinica B 12(6):2887–2904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie X, Li H, Wang Y, Wan Z, Luo S, Zhao Z, Liu J, Wu X, Li X, Li X (2019) Therapeutic effects of gentiopicroside on adjuvant-induced arthritis by inhibiting inflammation and oxidative stress in rats. Int Immunopharmacol 76:105840

    Article  PubMed  CAS  Google Scholar 

  • Xing S, Nong F, Qin J, Huang H, Zhan R, Chen W (2021) Gentiopicroside produces endothelium-independent vasodilation by deactivating the PI3K/Akt/Rho-kinase pathway in isolated rat thoracic aorta. Biomed Res Int 2021:5565748

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong K, Gao T, Zhang T, Wang Z, Han H (2017) Simultaneous determination of gentiopicroside and its two active metabolites in rat plasma by LC-MS/MS and its application in pharmacokinetic studies. J Chromatogr B, Anal Technol Biomed Life Sci 1065–1066:1–7

    Article  Google Scholar 

  • Xu Z, Zhang M, Wang Y, Chen R, Xu S, Sun X, Yang Y, Lin Z, Wang S, Huang H (2022) Gentiopicroside ameliorates diabetic renal tubulointerstitial fibrosis via inhibiting the AT1R/CK2/NF-κB pathway. Front Pharmacol 13:848915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada H, Kikuchi S, Inui T, Takahashi H, Kimura K (2014) Gentiolactone, a secoiridoid dilactone from Gentiana triflora, inhibits TNF-α, iNOS and Cox-2 mRNA expression and blocks NF-κB promoter activity in murine macrophages. PLoS ONE 9(11):e113834

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HX, Shang Y, Jin Q, Wu YL, Liu J, Qiao CY, Zhan ZY, Ye H, Nan JX, Lian LH (2020) Gentiopicroside ameliorates the progression from hepatic steatosis to fibrosis induced by chronic alcohol intake. Biomol Ther 28(4):320–327

    Article  CAS  Google Scholar 

  • Yao T, Cui Q, Liu Z, Wang C, Zhang Q, Wang G (2019) Metabolomic evidence for the therapeutic effect of gentiopicroside in a corticosterone-induced model of depression. Biomed Pharmacother = Biomedecine Pharmacotherapie 120:109549

    Article  PubMed  CAS  Google Scholar 

  • Yin W, Wang J, Jiang L, James Kang Y (2021) Cancer and stem cells. Exp Biol Med (Maywood, N.J.) 246(16):1791–1801

    Article  CAS  Google Scholar 

  • Zeng R, Hu H, Ren G, Liu H, Qu Y, Hua W, Wang Z (2015) Chemical profiling assisted quality assessment of Gentianae macrophyllae by high-performance liquid chromatography using a fused-core column. J Chromatogr Sci 53(8):1274–1279

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhan G, Jin M, Zhang H, Dang J, Zhang Y, Guo Z, Ito Y (2018) Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae-A traditional medicine: a review. Phytomedicine 46:142–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Jiang Y, Mu F, Wu H, You Q (2019) Gentiopicrin exerts anti-rheumatic effect in human fibroblast-like synoviocytes via inhibition of p38MAPK/NF-κB pathway. Cell Mol Biol (Noisy-le-Grand, France) 65(6):85–90

    Article  Google Scholar 

  • Zhang Y, Yang X, Wang S, Song S, Yang X (2021) Gentiopicroside prevents alcoholic liver damage by improving mitochondrial dysfunction in the rat model. Phytother Res: PTR 35(4):2230–2251

    Article  PubMed  CAS  Google Scholar 

  • Zhang QL, Xia PF, Peng XJ, Wu XY, Jin H, Zhang J, Zhao L (2022) Synthesis, and anti-inflammatory activities of gentiopicroside derivatives. Chin J Nat Med 20(4):309–320

    PubMed  CAS  Google Scholar 

  • Zhao L, Ye J, Wu GT, Peng XJ, Xia PF, Ren Y (2015) Gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte. J Ethnopharmacol 172:100–107

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Ouyang J, Wang H, Wang X (2019) Antidermatophyte activity of the gentiopicroside-rich n-butanol fraction from Gentiana siphonantha maxim. Root on a guinea pig model of dermatophytosis. Complement Med Res 26(1):31–38

    Article  PubMed  Google Scholar 

  • Zou B, Fu Y, Cao C, Pan D, Wang W, Kong L (2021) Gentiopicroside ameliorates ovalbumin-induced airway inflammation in a mouse model of allergic asthma via regulating SIRT1/NF-κB signaling pathway. Pulm Pharmacol Ther 68:102034

    Article  PubMed  CAS  Google Scholar 

  • Zou XZ, Zhang YW, Pan ZF, Hu XP, Xu YN, Huang ZJ, Sun ZY, Yuan MN, Shi JN, Huang P, Liu T (2022) Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. Phytomedicine 106:154389

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (81873163) and the Key Project of Natural Science Foundation of Shandong Province (ZR2020KC024).

Author information

Authors and Affiliations

Authors

Contributions

Bin Liu and Feng Pang: writing—original draft, visualization; Hongsheng Bi and Dadong Guo: conceptualization, resources, writing—review and editing, funding acquisition.

The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Dadong Guo.

Ethics declarations

Ethical approval

None of the authors of this article conducted any studies involving human participants or animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. GPS can treat arthralgia, stroke, hemiplegia, pains, jaundice, and infantile malnutrition.

2. GPS exhibits hepatoprotective, antifibrosis, antioxidant, and antitumor effects.

3. GPS can play a role in anti-inflammatory and immunomodulatory activities.

4. Regulatory mechanisms of GPS on multiple human diseases were illustrated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Pang, F., Bi, H. et al. Regulatory mechanisms of Gentiopicroside on human diseases: a brief review. Naunyn-Schmiedeberg's Arch Pharmacol 397, 725–750 (2024). https://doi.org/10.1007/s00210-023-02672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02672-6

Keywords

Navigation