Skip to main content

Advertisement

Log in

Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This document includes citations for all the data that were analyzed throughout the literature review.

References

  • Abadi AJ, Mirzaei S, Mahabady MK et al (2022) Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 36:189–213

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal V, Tuli HS, Thakral F et al (2020) Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp Biol Med 245:486–497

    Article  CAS  Google Scholar 

  • Aghapour F, Moghadamnia AA, Nicolini A et al (2018) Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem Biophys Res Commun 500:860–865

    Article  CAS  PubMed  Google Scholar 

  • Almatroodi SA, Alsahli MA, Almatroudi A et al (2021) Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 26:1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgharian P, Tazekand AP, Hosseini K et al (2022) Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 22:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askar MA, El-Nashar HA, Al-Azzawi MA, Rahman SSA, Elshawi OE (2022) Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer: Basic Clin Res 16:11782234221086728

    Google Scholar 

  • Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M (2018) In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother 106:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan S, Mukherjee S, Das S et al (2017) Gold nanoparticles–conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt–mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 35:217–231

    Article  CAS  PubMed  Google Scholar 

  • Barani M, Hajinezhad MR, Zargari F et al (2023) Preparation, characterization, cytotoxicity and pharmacokinetics of niosomes containing gemcitabine: in vitro, in vivo, and simulation studies. J Drug Deliv Sci Technol 84:104505

    Article  CAS  Google Scholar 

  • Bentz AB (2017) A review of quercetin: chemistry, antioxident properties, and bioavailability. J Young Investig

  • Bhattacharya T, Shin GH, Kim JT (2023) Carbon dots: opportunities and challenges in cancer therapy. Pharmaceutics 15:1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Kumari P, Lakhani PM, Ghosh B (2016) Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 83:184–202

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Fang Z, Dou J, Yu A, Zhai G (2013) Bioavailability of quercetin: problems and promises. Curr Med Chem 20:2572–2582

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Yan H, Pang S et al (2022) Liposomes as multifunctional nano-carriers for medicinal natural products. Front Chem 10:963004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comfort C, Garrastazu G, Pozzoli M, Sonvico F (2015) Opportunities and challenges for the nasal administration of nanoemulsions. Curr Top Med Chem 15:356–368

    Article  CAS  PubMed  Google Scholar 

  • Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK (2022) Therapeutic potential of quercetin-loaded nanoemulsion against experimental visceral leishmaniasis: in vitro/ex vivo studies and mechanistic insights. Mol Pharm 19:3367–3384

    Article  CAS  PubMed  Google Scholar 

  • David AVA, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84

    Article  CAS  Google Scholar 

  • de Oliveira PR, Hoffmann S, Pereira S, Goycoolea FM, Schmitt CC, Neumann MG (2018) Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur J Pharm Biopharm 131:203–210

    Article  Google Scholar 

  • Deldar Abad Paskeh M, Asadi S, Zabolian A et al (2021) Targeting cancer stem cells by dietary agents: an important therapeutic strategy against human malignancies. Int J Mol Sci 22:11669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanaraj T, Mohan M, Arunakaran J (2021) Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch Biochem Biophys 701:108795

    Article  CAS  PubMed  Google Scholar 

  • Dian L, Yu E, Chen X et al (2014) Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 9:1–11

    Article  CAS  Google Scholar 

  • Elbarbry F, Ung A, Abdelkawy K (2017) Studying the inhibitory effect of quercetin and thymoquinone on human cytochrome P450 enzyme activities. Pharmacogn Mag 13:S895

    Google Scholar 

  • Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NA, Sahyon HA (2021) Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 185:134–152

    Article  CAS  PubMed  Google Scholar 

  • Ersoz M, Erdemir A, Derman S, Arasoglu T, Mansuroglu B (2020) Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm Dev Technol 25:757–766

    Article  CAS  PubMed  Google Scholar 

  • Ferry DR, Smith A, Malkhandi J et al (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668

    CAS  PubMed  Google Scholar 

  • Formica J, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  PubMed  Google Scholar 

  • Gang W, Jie WJ, Ping ZL et al (2012) Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv 9:599–613

    Article  PubMed  Google Scholar 

  • Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R (2022) Co-encapsulated nanoparticles of erlotinib and quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf, B 211:112305

    Article  CAS  Google Scholar 

  • Gao Y, Li C, Xue T et al (2023) Quercetin mediated TET1 expression through microRNA-17 induced cell apoptosis in melanoma cells. Biochem Genet 61:762–777

    Article  CAS  PubMed  Google Scholar 

  • Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE (2007) A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 121:2225–2232

    Article  CAS  PubMed  Google Scholar 

  • Gibellini L, Pinti M, Nasi M, et al. (2011) Quercetin and cancer chemoprevention. Evidence-Based Complementary and Alternative Medicine 2011:15. https://doi.org/10.1093/ecam/neq053

  • Gokhale JP, Mahajan HS, Surana SJ (2019) Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed Pharmacother 112:108622

    Article  CAS  PubMed  Google Scholar 

  • Graefe E, Derendorf H, Veit M (1999) Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther 37:219–233

    CAS  PubMed  Google Scholar 

  • Guan F, Wang Q, Bao Y, Chao Y (2021) Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 11:7280–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Zhang W, Liu H et al (2023) Quercetin induces apoptosis in HepG2 cells via directly interacting with YY1 to disrupt YY1-p53 interaction. Metabolites 13:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugler R, Leschik M, Dengler H (1975) Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 9:229–234

    Article  CAS  PubMed  Google Scholar 

  • Hai Y, Zhang Y, Liang Y et al (2020) Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives: absorption, metabolism and function of quercetin. Food Front 1:420–434

    Article  Google Scholar 

  • Hsieh Y-S, Yang S-F, Sethi G, Hu D-N (2015) Natural bioactives in cancer treatment and prevention. BioMed Res Int 2015:1. https://doi.org/10.1155/2015/182835

  • Huang M, Su E, Zheng F, Tan C (2017) Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food Funct 8:3198–3208

    Article  CAS  PubMed  Google Scholar 

  • Hussain Y, Mirzaei S, Ashrafizadeh M et al (2021) Quercetin and its nano-scale delivery systems in prostate cancer therapy: paving the way for cancer elimination and reversing chemoresistance. Cancers 13:1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi H, Verma A, Soni DK (2019) Impact of microbial genomics approaches for novel antibiotic target. Microbial Genom Sustain Agroecosyst 2:75–88

    Article  Google Scholar 

  • Joshi H, Kumar G, Tuli HS, Mittal S (2022) Inhibition of cancer cell metastasis by nanotherapeutics: current achievements and future trends. Nanotherapeutics in cancer. Jenny Stanford Publishing, New York, pp 161–209

    Google Scholar 

  • Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M (2023) Genistein: a promising modulator of apoptosis and survival signaling in cancer. Naunyn-Schmiedeberg’s Arch Pharmacol:1–18. https://doi.org/10.1007/s00210-023-02550-1

  • Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS (2016) Molecular mechanisms of action of quercetin in cancer: recent advances. Tumor Biol 37:12927–12939

    Article  CAS  Google Scholar 

  • Kee J-Y, Han Y-H, Kim D-S et al (2016) Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine 23:1680–1690

    Article  CAS  PubMed  Google Scholar 

  • Khan MM, Torchilin VP (2022) Recent trends in nanomedicine-based strategies to overcome multidrug resistance in tumors. Cancers 14:4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Oh KT, Youn YS, Lee ES (2022) pH-sensitive twin liposomes containing quercetin and laccase for tumor therapy. Biomacromol 23:3688–3697

    Article  CAS  Google Scholar 

  • Klein S, Luchs T, Leng A, Distel LV, Neuhuber W, Hirsch A (2020) Encapsulation of hydrophobic drugs in shell-by-shell coated nanoparticles for radio-and chemotherapy—an in vitro study. Bioengineering 7:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Sharma G, Misra C et al (2018) N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: a synergistic approach to overcome MDR in cancer cells. Mater Sci Eng, C 89:274–282

    Article  CAS  Google Scholar 

  • Lan J-S, Liu L, Zeng R-F et al (2021) Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy. Chem Eng J 407:127212

    Article  CAS  Google Scholar 

  • Li B, Wang W, Zhao L et al (2023) Multifunctional AIE nanosphere-based “Nanobomb” for trimodal imaging-guided photothermal/photodynamic/pharmacological therapy of drug-resistant bacterial infections. ACS Nano 17:4601–4618

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Piao M, Song Y, Liu C (2020) Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice. J Immunol Res 2020:1–10

    Article  Google Scholar 

  • Luo C-l, Liu Y-q, Wang P et al (2016) The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother 82:595–605

    Article  CAS  PubMed  Google Scholar 

  • Men K, Duan X, Wei Wei X et al (2014) Nanoparticle-delivered quercetin for cancer therapy. Anticancer Agents Med Chem. 14:826–832

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei A, Deyhimfar R, Azodian Ghajar H, Mashhadi R, Noori M, Dialameh H, Aghsaeifard Z, Aghamir SM (2023) Quercetin can be a more reliable treatment for metastatic prostate cancer than the localized disease: an in vitro study. J Cell Molec Med. https://doi.org/10.1111/jcmm.17783

  • Mohammed HA, Sulaiman GM, Anwar SS et al (2021) Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine 16:1937–1961

    Article  CAS  PubMed  Google Scholar 

  • Mustafa IF, Hussein MZ (2020) Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10:1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Lee Y-H, Sharma AR et al (2017) Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol 21:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A (2019) Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina 55:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D (2019) Targeting senescent cells in translational medicine. EMBO Mol Med 11:e10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H-C, Jiang Q, Yu Y, Mei J-P, Cui Y-K, Zhao W-J (2015) Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int 80:60–71

    Article  CAS  PubMed  Google Scholar 

  • Paranthaman S, Uthaiah CA, Osmani RAM et al (2022) Anti-proliferative potential of quercetin loaded polymeric mixed micelles on rat C6 and human U87MG glioma cells. Pharmaceutics 14:1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD (2018) Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomed 13:2869

    Article  CAS  Google Scholar 

  • Pinheiro R, Granja A, Loureiro JA et al (2020) Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci 148:105314

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Kumari A, Srivastava R, Panda D (2019) Quercetin encapsulated biodegradable plasmonic nanoparticles for photothermal therapy of hepatocellular carcinoma cells. ACS Appl Bio Mater 2:5727–5738

    Article  CAS  PubMed  Google Scholar 

  • Rahdar A, Hajinezhad MR, Sargazi S et al (2022) Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: synthesis, characterization, biological, and in silico evaluations. J Mol Liq 346:118271

    Article  CAS  Google Scholar 

  • Rashedi J, Haghjo AG, Abbasi MM et al (2019) Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in wistar rats. Adv Pharm Bull 9:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshanazadeh M, Rezaei HB, Rashidi M (2021) Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran J Basic Med Sci 24:928

    PubMed  PubMed Central  Google Scholar 

  • Sadhukhan P, Kundu M, Chatterjee S et al (2019) Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng, C 100:129–140

    Article  CAS  Google Scholar 

  • Sak K (2014) Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 66:177–193

    Article  CAS  PubMed  Google Scholar 

  • Sak K (2022) Anticancer action of plant products: changing stereotyped attitudes. Explor Target Anti-Tumor Ther 3:423

    CAS  Google Scholar 

  • Salehi B, Machin L, Monzote L et al (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5:11849–11872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-López E, Guerra M, Dias-Ferreira J et al (2019) Current applications of nanoemulsions in cancer therapeutics. Nanomaterials (Basel) 9(6):821

    Article  PubMed  Google Scholar 

  • Serri C, Quagliariello V, Iaffaioli RV et al (2019) Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: a preliminary in vitro study. J Cell Physiol 234:4959–4969

    Article  CAS  PubMed  Google Scholar 

  • Shahidi S, Rostamizadeh K, Fathi M, Nedaei K, Ramazani A (2022) Combination of quercetin or/and siRNA-loaded DDAB-mPEG-PCL hybrid nanoparticles reverse resistance to regorafenib in colon cancer cells. BMC Complement Med Ther 22:1–13

    Article  Google Scholar 

  • Shawky S, Makled S, Awaad A, Boraie N (2022) Quercetin loaded cationic solid lipid nanoparticles in a mucoadhesive in situ gel—a novel intravesical therapy tackling bladder cancer. Pharmaceutics 14:2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shitole AA, Sharma N, Giram P et al (2020) LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs docetaxel and quercetin for prostate cancer. Mater Sci Eng, C 114:111035

    Article  CAS  Google Scholar 

  • Simon AT, Dutta D, Chattopadhyay A, Ghosh SS (2021) Quercetin-loaded luminescent hydroxyapatite nanoparticles for theranostic application in monolayer and spheroid cultures of cervical cancer cell line in vitro. ACS Appl Bio Mater 4:4495–4506

    Article  CAS  PubMed  Google Scholar 

  • Son H-K, Kim D (2023) Quercetin induces cell cycle arrest and apoptosis in YD10B and YD38 oral squamous cell carcinoma cells. Asian Pac J Cancer Prevent: APJCP 24:283

    Article  CAS  Google Scholar 

  • Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R (2020) Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants 9:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Li Y, Xu L et al (2020) Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J Int Med Res 48:0300060519897185

    PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  • Tang L, Li K, Zhang Y et al (2020) Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep 10:2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuli HS, Joshi H, Vashishth K et al (2023) Chemopreventive mechanisms of amentoflavone: recent trends and advancements. Naunyn Schmiedebergs Arch Pharmacol 396:865–876

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy HG, Sanlier N (2020) A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 60:3290–3303

    Article  CAS  PubMed  Google Scholar 

  • Vaz GR, Clementino A, Bidone J et al (2020) Curcumin and quercetin-loaded nanoemulsions: physicochemical compatibility study and validation of a simultaneous quantification method. Nanomaterials 10:1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayak M, Maurya AK (2019) Quercetin loaded nanoparticles in targeting cancer: recent development. Anticancer Agents Med Chem 19:1560–1576

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu H, Wang S et al (2021) Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng, C 119:111442

    Article  CAS  Google Scholar 

  • Wu Q, Deng S, Li L et al (2013) Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models. Nanoscale 5:12480–12493

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Shi D, Liu L et al (2011) Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS ONE 6:e22934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Zhang B, Yin S, Xie S, Huang K, Wang J, Yang W, Liu H, Zhang G, Liu X, Li Y (2022) Quercetin induces autophagy-associated death in HL-60 cells through CaMKKβ/AMPK/mTOR signal pathway. Acta Biochimica et Biophysica Sinica 54(9):1244. https://doi.org/10.3724/abbs.2022117

  • Yadav N, Tripathi AK, Parveen A (2022) PLGA-quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics 14:1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Jiang X, Song L et al (2016) Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep 35:1602–1610

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Cheng M, Zhang X, Chen X (2021) Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 12:6664–6681

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang Q, Yang S et al (2016) Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur J Pharmacol 781:60–68

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Yu W, Bi L et al (2022) Quercetin induces apoptosis of human breast cancer cells by activiting PTEN and inhibiting PI3K/AKT and JNK signaling pathways. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 38:714–720

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr. T.S., would like to acknowledge ICMR-DHR, Government of India (ICMR-DHR Young Scientist Fellowship, F.NO: R. 12014/29/2022/HR), and college Research and Development Cell (RDC) Scheme (File no. HRC/RDC/2021/RP/13). We would also like to acknowledge Dr. Hadi Sajid Abdulabbas for his general help in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.S.T., H.J., D.S.G., G.K., T.S., S.R., K.S., and D.A. conceived the conceptualization, methodology, validation, and writing—review. M.G. and H.S.T. performed the formal analysis and resources. A.K.S. did the data curation and editing. R.S.C. contributed to revise the manuscript. All authors have read and agreed to the published version of the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Hardeep Singh Tuli.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have their consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, H., Gupta, D.S., Kaur, G. et al. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. Naunyn-Schmiedeberg's Arch Pharmacol 396, 3443–3458 (2023). https://doi.org/10.1007/s00210-023-02625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02625-z

Keywords

Navigation