Skip to main content

Advertisement

Log in

Chemopreventive mechanisms of amentoflavone: recent trends and advancements

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This document includes citations for all the data that were analyzed throughout the literature review.

Abbreviations

IARC :

International Agency for Research on Cancer

AF :

Amentoflavone

DMSO :

Dimethyl sulphoxide

COX-2 :

Cyclooxygenase-2

iNOS :

Inducible nitric oxide synthase

PPARγ :

Peroxisome proliferator–activated receptor gamma

PTEN :

Phosphatase and tensin homolog

ROS :

Reactive oxygen species

AMPK :

5'AMP-activated protein kinase

mTOR :

Mammalian target of rapamycin

DNMT1 :

DNA methyltransferase-1

C-FLIP :

Cellular FLICE-like inhibitory protein

Mcl-1 :

Myeloid cell leukemia 1

XIAP :

X-linked inhibitor of apoptosis

AIF :

Apoptosis-inducing factor

VEGF :

Vascular endothelial growth factor

MMP-2 :

Matrix metalloproteinase-2

ERK :

Extracellular signal-regulated kinase

MAPK :

Mitogen activated protein kinase

TNF-α :

Tumor necrosis factor-alpha

IL-6 :

Interleukin-6

EMT :

Epithelial mesenchymal transition

PI3K :

Phosphatidylinositide 3-kinase

MPP :

1-Methyl-4-phenylpyridinium

NLRP3 :

NOD-like receptor protein 3

LPS :

Lipopolysaccharide

RNS :

Reactive nitrogen species

MDA :

Malondialdehyde

AKR1B10 :

Aldo-keto reductase family 1B10

PARP-1 :

Poly [ADP-ribose] polymerase 1

ADMET :

Absorption, distribution, metabolism, excretion, and transportation

TBESD :

Total bioflavonoids extract from Selaginella doederleinii

References

  • Adnan M, Siddiqui AJ, Arshad J, Hamadou WS, Awadelkareem AM, Sachidanandan M, Patel M (2021) Evidence-based medicinal potential and possible role of selaginella in the prevention of modern chronic diseases: ethnopharmacological and ethnobotanical perspective. Records Nat Prod 15:355

    Google Scholar 

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692

    Article  CAS  PubMed  Google Scholar 

  • An J, Li Z, Dong Y, Ren J, Huo J (2016) Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol Cell Biochem 413:87–95

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer 125:2863–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai VK, Park I, Lee J, Shukla S, Nile SH, Chun HS, Khan I, Oh SY, Lee H, Huh YS (2019) Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chem 271:239–247

    Article  CAS  PubMed  Google Scholar 

  • Banerjee T, Valacchi G, Ziboh VA, van der Vliet A (2002) Inhibition of TNFα-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-κB activation in A549 cells. Mol Cell Biochem 238:105–110

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Zhao C, Du Y, Huang Y, Zhao Q (2019) Amentoflavone ameliorates cold stress-induced inflammation in lung by suppression of C3/BCR/NF-κB pathways. BMC Immunol 20:1–10

    Article  Google Scholar 

  • Cai K, Yang Y, Guo ZJ, Cai RL, Hashida H, Li HX (2022) Amentoflavone inhibits colorectal cancer epithelial-mesenchymal transition via the miR-16–5p/HMGA2/beta-catenin pathway. Annals of translational medicine 10:1009. https://doi.org/10.21037/atm-22-3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Qin L, Huang F, Wang X, Yang L, Shi H, Wu H, Zhang B, Chen Z, Wu X (2017) Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol 319:80–90

    Article  PubMed  Google Scholar 

  • Chen JH, Chen WL, Liu YC (2015) Amentoflavone induces anti-angiogenic and anti-metastatic effects through suppression of NF-kappaB activation in MCF-7 cells. Anticancer Res 35:6685–6693

    CAS  PubMed  Google Scholar 

  • Chen B, Wang X, Zou Y, Chen W, Wang G, Yao W, Shi P, Li S, Lin S, Lin X (2018) Simultaneous quantification of five biflavonoids in rat plasma by LC-ESI–MS/MS and its application to a comparatively pharmacokinetic study of Selaginella doederleinii Hieron extract in rats. J Pharm Biomed Anal 149:80–88

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wang X, Lin D, Xu D, Li S, Huang J, Weng S, Lin Z, Zheng Y, Yao H (2019) Proliposomes for oral delivery of total biflavonoids extract from Selaginella doederleinii: formulation development, optimization, and in vitro–in vivo characterization. Int J Nanomed 14:6691

    Article  CAS  Google Scholar 

  • Chen C-H, Huang Y-C, Lee Y-H, Tan Z-L, Tsai C-J, Chuang Y-C, Tu H-F, Liu T-C, Hsu F-T (2020a) Anticancer efficacy and mechanism of amentoflavone for sensitizing oral squamous cell carcinoma to cisplatin. Anticancer Res 40:6723–6732

    Article  PubMed  Google Scholar 

  • Chen Y, Li N, Wang H, Wang N, Peng H, Wang J, Li Y, Liu M, Li H, Zhang Y (2020b) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247:117425

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Huang YC, Lee YH, Tan ZL, Tsai CJ, Chuang YC, Tu HF, Liu TC, Hsu FT (2020c) Anticancer efficacy and mechanism of amentoflavone for sensitizing oral squamous cell carcinoma to cisplatin. Anticancer Res 40:6723–6732

    Article  PubMed  Google Scholar 

  • Chen B, Wang X, Zhang Y, Huang K, Liu H, Xu D, Li S, Liu Q, Huang J, Yao H (2020d) Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from Selaginella doederleinii extract by amorphous solid dispersion. Drug Delivery 27:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WT, Chen CH, Su HT, Yueh PF, Hsu FT, Chiang IT (2021) Amentoflavone induces cell-cycle arrest, apoptosis, and invasion inhibition in non-small cell lung cancer cells. Anticancer research 41:1357–1364. https://doi.org/10.21873/anticanres.14893

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Fang B, Qiao L, Zheng Y (2022) Discovery of anticancer activity of amentoflavone on esophageal squamous cell carcinoma: bioinformatics, structure-based virtual screening, and biological evaluation. J Microbiol Biotechnol 32:718–729. https://doi.org/10.4014/jmb.2203.03050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CH, Yeh CY, Chung JG, Chiang IT, Hsu FT (2019) Amentoflavone induces apoptosis and reduces expression of anti-apoptotic and metastasis-associated proteins in bladder cancer. Anticancer research 39:3641–3649. https://doi.org/10.21873/anticanres.13512

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract: Int J Kuwait Univ, Health Sci Centre 25(Suppl 2):41–59. https://doi.org/10.1159/000443404

    Article  Google Scholar 

  • Duan S, Hong B, Zhou J, Zhang Y, Ge F, Li M (2022) Assessment of amentoflavone loaded sub-micron particle preparation using supercritical antisolvent for its antitumor activity. Curr Drug Deliv 19:41–48

    Article  CAS  PubMed  Google Scholar 

  • Fan K, Qiu X, Fu Y, Lin K, Li H, Yang G (2017) Amentoflavone suppresses cell growth and invasion in renal carcinoma cells by activating PPARγ. Mol Cell Biomech 14:33

    Google Scholar 

  • Feng X, Chen Y, Li L, Zhang Y, Zhang L, Zhang Z (2020) Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles. Drug Delivery 27:137–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto S-I, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, Taniguchi H, Ishikawa S, Ito H, Yamamoto S (2005) Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non–small cell lung carcinomas. Clin Cancer Res 11:1776–1785

    Article  CAS  PubMed  Google Scholar 

  • Guruvayoorappan C, Kuttan G (2007) Effect of amentoflavone on the inhibition of pulmonary metastasis induced by B16F–10 melanoma cells in C57BL/6 mice. Integr Cancer Ther 6:185–197. https://doi.org/10.1177/1534735407302345

    Article  CAS  PubMed  Google Scholar 

  • Guruvayoorappan C, Kuttan G (2008a) Amentoflavone inhibits experimental tumor metastasis through a regulatory mechanism involving MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, ERK-1, ERK-2, STAT-1, NM23 and cytokines in lung tissues of C57BL/6 mice. Immunopharmacol Immunotoxicol 30:711–727

    Article  CAS  PubMed  Google Scholar 

  • Guruvayoorappan C, Kuttan G (2008b) Amentoflavone stimulates apoptosis in B16F–10 melanoma cells by regulating bcl-2, p53 as well as caspase-3 genes and regulates the nitric oxide as well as proinflammatory cytokine production in B16F–10 melanoma cells, tumor associated macrophages and peritoneal macrophages. J Exp Ther Oncol 7:207–218

    CAS  PubMed  Google Scholar 

  • Hae-Il P, Chuan-Ling S, Chen J (2015) Total synthesis of amentoflavone. Med Chem 5:467–469

    Google Scholar 

  • Hu X-L, Feng J-H, Pham T-A, Ma H-Y, Ma M-X, Song R, Shen W, Xiong F, Zhang X-Q, Ye W-C (2018) Identification of amentoflavone as a potent highly selective PARP-1 inhibitor and its potentiation on carboplatin in human non-small cell lung cancer. Phytomedicine 50:88–98

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Rizshsky L, Hauck CC, Nikolau BJ, Murphy PA, Birt DF (2012) The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3. Phytochemistry 76:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He R, Luo W, Zhu Y-S, Li J, Tan T, Zhang X, Hu Z, Luo D (2016) Aldo-keto reductase family 1 member B10 inhibitors: potential drugs for cancer treatment. Recent Pat Anti-Cancer Drug Discovery 11:184–196

    Article  CAS  PubMed  Google Scholar 

  • Ishola I, Chaturvedi J, Rai S, Rajasekar N, Adeyemi O, Shukla R, Narender T (2013) Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. J Ethnopharmacol 146:440–448

    Article  CAS  PubMed  Google Scholar 

  • Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC (2012) Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264 7 macrophage cells. J Enzyme Inhibition Med Chem 27:875–879

    Article  CAS  Google Scholar 

  • Joshi H, Malik A, Aggarwal S, Munde M, Maitra SS, Adlakha N, Bhatnagar R (2019) In-vitro detection of phytopathogenic fungal cell wall by polyclonal sera raised against trimethyl chitosan nanoparticles. Int J Nanomed 14:10023

    Article  CAS  Google Scholar 

  • Joshi H, Kumar G, Tuli H.S, Mittal S (2023) Inhibition of cancer cell metastasis by nanotherapeutics: current achievements and future trends. In Nanotherapeutics in cancer, Jenny Stanford Publishing: 161–209

  • Jung YJ, Lee EH, Lee CG, Rhee KJ, Jung WS, Choi Y, Pan CH, Kang K (2017) AKR1B10-inhibitory Selaginella tamariscina extract and amentoflavone decrease the growth of A549 human lung cancer cells in vitro and in vivo. J Ethnopharmacol 202:78–84. https://doi.org/10.1016/j.jep.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Son KH, Chang HW, Kang SS, Kim HP (1998) Amentoflavone, a plant biflavone: a new potential anti-inflammatory agent. Arch Pharmacal Res 21:406–410

    Article  CAS  Google Scholar 

  • Kim GL, Jang EH, Lee DE, Bang C, Kang H, Kim S, Yoon SY, Lee DH, Na JH, Lee S et al (2020) Amentoflavone, active compound of Selaginella tamariscina, inhibits in vitro and in vivo TGF-beta-induced metastasis of human cancer cells. Arch Biochem Biophys 687:108384. https://doi.org/10.1016/j.abb.2020.108384

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y-H, Yeh Y-T, Pan S-Y, Hsieh S-C (2019) Identification and structural elucidation of anti-inflammatory compounds from Chinese olive (Canarium album L) fruit extracts. Foods 8:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Lee MS, Oh WK, Sul JY (2009) Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 32:1427–1432

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim H, Kang J-W, Kim J-H, Lee DH, Kim M-S, Yang Y, Woo E-R, Kim YM, Hong J (2011) The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J Med Food 14:808–816

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Tsai JJ, Tseng CW, Kuo YC, Chuang YC, Lin SS, Hsu FT (2018) Amentoflavone inhibits ERK-modulated tumor progression in hepatocellular carcinoma in vitro. In vivo 32:549–554. https://doi.org/10.21873/invivo.11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Chen X, Niu SQ, Zhou HY, Li QS (2020) Protective antioxidant effects of amentoflavone and total flavonoids from Hedyotis diffusa on H2O2-induced HL-O2 cells through ASK1/p38 MAPK pathway. Chem Biodivers 17:e2000251

    Article  CAS  PubMed  Google Scholar 

  • Li W-W, Li D, Qin Y, Sun C-X, Wang Y-L, Gao L, Ling-Hu L, Zhang F, Cai W, Zhu L (2021) Cardioprotective effects of Amentoflavone by suppression of apoptosis and inflammation on an in vitro and vivo model of myocardial ischemia-reperfusion injury. Int Immunopharmacol 101:108296

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Ren Q, Yang C, Zhang T, Li J, Wang X, Qu X, Zhang X, Zhou Z, Zhang Z (2015) Liquid chromatography–tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. J Agric Food Chem 63:1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yue Q, He S (2017) Amentoflavone suppresses tumor growth in ovarian cancer by modulating Skp2. Life Sci 189:96–105

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Kezuka C, Morikawa Y, Suzuki A, Endo S, Iguchi K, Miura T, Nishinaka T, Terada T, El-Kabbani O (2015) Up-regulation of carbonyl reductase 1 renders development of doxorubicin resistance in human gastrointestinal cancers. Biol Pharm Bull 38:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Mercader AG, Pomilio AB (2013) Naturally-occurring dimers of flavonoids as anticarcinogens. Anticancer Agents Med Chem 13:1217–1235

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Rho H.S, Yang Y, Yoon J.Y, Lee J, Hong Y.D, Kim H.C, Choi S.S, Kim T.W, Shin S.S (2013) Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators of inflammation 2013

  • Pan X, Tan N, Zeng G, Zhang Y, Jia R (2005) Amentoflavone and its derivatives as novel natural inhibitors of human Cathepsin B. Bioorg Med Chem 13:5819–5825. https://doi.org/10.1016/j.bmc.2005.05.071

    Article  CAS  PubMed  Google Scholar 

  • Pan PJ, Tsai JJ, Liu YC (2017) Amentoflavone inhibits metastatic potential through suppression of ERK/NF-kappaB activation in osteosarcoma U2OS cells. Anticancer Res 37:4911–4918. https://doi.org/10.21873/anticanres.11900

    Article  CAS  PubMed  Google Scholar 

  • Pei JS, Liu CC, Hsu YN, Lin LL, Wang SC, Chung JG, Bau DT, Lin SS (2012) Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo 26:963–970

    CAS  PubMed  Google Scholar 

  • Qiu S, Zhou Y, Kim JT, Bao C, Lee HJ, Chen J (2021) Amentoflavone inhibits tumor necrosis factor-alpha-induced migration and invasion through AKT/mTOR/S6k1/hedgehog signaling in human breast cancer. Food Funct 12:10196–10209. https://doi.org/10.1039/d1fo01085a

    Article  CAS  PubMed  Google Scholar 

  • Rizk YS, Santos-Pereira S, Gervazoni L, Hardoim DJ, Cardoso FO, de Souza C, Pelajo-Machado M, Carollo CA, de Arruda CCP, Almeida-Amaral EE et al (2021) Amentoflavone as an ally in the treatment of cutaneous leishmaniasis: analysis of its antioxidant/prooxidant mechanisms. Frontiers in cellular and infection microbiology 11:615814. https://doi.org/10.3389/fcimb.2021.615814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong S, Yang C, Wang F, Wu Y, Sun K, Sun T, Wu Z (2022) Amentoflavone exerts anti-neuroinflammatory effects by inhibiting TLR4/MyD88/NF-κB and activating Nrf2/HO-1 pathway in lipopolysaccharide-induced BV2 microglia. Mediators of Inflammation 2022

  • Sak K (2022) Anticancer action of plant products: changing stereotyped attitudes. Explor Target Antitumor Ther 3:423–427. https://doi.org/10.37349/etat.2022.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakthivel K, Guruvayoorappan C (2013) Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-κB signal transduction pathways in rats with ulcerative colitis. Int Immunopharmacol 17:907–916

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhen P, Li D, Liu X, Ding X, Liu H (2022) Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS)/5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered 13:13269–13279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a cancer journal for clinicians 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  • Tordera M, Ferrándiz ML, Alcaraz MJ (1994) Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Zeitschrift Für Naturforschung C 49:235–240

    Article  CAS  Google Scholar 

  • Tsai J-J, Hsu F-T, Pan P-J, Chen C-W, Kuo Y-C (2018) Amentoflavone enhances the therapeutic efficacy of sorafenib by inhibiting anti-apoptotic potential and potentiating apoptosis in hepatocellular carcinoma in vivo. Anticancer Res 38:2119–2125

    CAS  PubMed  Google Scholar 

  • Tuli H.S, Garg V.K, Mehta J.K, Kaur G, Mohapatra R.K, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D (2022) Licorice (Glycyrrhiza glabra L.)-derived phytochemicals target multiple signaling pathways to confer oncopreventive and oncotherapeutic effects. OncoTargets and Therapy 1419–1448

  • Varol M (2020) ROS and oxidative stress in cancer: recent advances. Drug targets in cellular processes of cancer: from nonclinical to preclinical models 109–138

  • Varol TÖ, Varol M (2022) Nanomaterials-mediated oxidative stress in cancer: recent trends and future perspectives. Nanotherapeutics in Cancer 97–135

  • Vlot AH, Aniceto N, Menden MP, Ulrich-Merzenich G, Bender A (2019) Applying synergy metrics to combination screening data: agreements, disagreements and pitfalls. Drug Discovery Today 24:2286–2298

    Article  CAS  PubMed  Google Scholar 

  • Wahyudi LD, Jeong J, Yang H, Kim J-H (2018) Amentoflavone-induced oxidative stress activates NF-E2-related factor 2 via the p38 MAP kinase-AKT pathway in human keratinocytes. Int J Biochem Cell Biol 99:100–108

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH, Kong AN (2012) Plants vs cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-cancer agents in medicinal chemistry 12:1281–1305. https://doi.org/10.2174/187152012803833026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Lu Y, Hu X, Feng J, Shen W, Wang R, Wang H (2020) Systematic strategy for metabolites of amentoflavone in vivo and in vitro based on UHPLC-Q-TOF-MS/MS analysis. J Agric Food Chem 68:14808–14823

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Hu X, Wang R, Long H, Wang H (2022) Evaluation of amentoflavone metabolites on PARP-1 inhibition and the potentiation on anti-proliferative effects of carboplatin in A549 cells. Bioorg Med Chem Lett 56:128480

    Article  CAS  PubMed  Google Scholar 

  • Woo E, Lee J, Cho I, Kim S, Kang K (2005) Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-κB activation in macrophages. Pharmacol Res 51:539–546

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Tang N, Lai X, Zhang J, Wen W, Li X, Li A, Wu Y, Liu Z (2021) Insights into amentoflavone: a natural multifunctional biflavonoid. Front Pharmacol 12:768708. https://doi.org/10.3389/fphar.2021.768708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xu W, Peng K, Sun X (2014) Amentoflavone induces apoptosis in SW480 human colorectal cancer cells via regulating beta-catenin and caspase-3 expressions. Nan fang yi ke da xue xue bao J Southern Med Univ 34:1035–1038

    CAS  Google Scholar 

  • Yang C-J, Wu M-H, Tsai J-J, Hsu F-T, Hsia T-C, Liu K-C, Kuo Y-C (2022a) Inactivation of AKT/ERK signaling and induction of apoptosis are associated with amentoflavone sensitization of hepatocellular carcinoma to lenvatinib. Anticancer Res 42:2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Yang CJ, Wu MH, Tsai JJ, Hsu FT, Hsia TC, Liu KC, Kuo YC (2022b) Inactivation of AKT/ERK signaling and induction of apoptosis are associated with amentoflavone sensitization of hepatocellular carcinoma to lenvatinib. Anticancer research 42:2495–2505. https://doi.org/10.21873/anticanres.15728

    Article  CAS  PubMed  Google Scholar 

  • Yen T-H, Hsieh C-L, Liu T-T, Huang C-S, Chen Y-C, Chuang Y-C, Lin S-S, Hsu F-T (2018a) Amentoflavone induces apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in glioblastoma cells. In Vivo 32:279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen TH, Hsieh CL, Liu TT, Huang CS, Chen YC, Chuang YC, Lin SS, Hsu FT (2018b) Amentoflavone induces apoptosis and inhibits NF-kB-modulated anti-apoptotic signaling in glioblastoma cells. In vivo 32:279–285. https://doi.org/10.21873/invivo.11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY (2017b) A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules 22:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li S.F (2017a) A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules 22, https://doi.org/10.3390/molecules22020299

  • Zhang Z, Sun T, Niu J-G, He Z-Q, Liu Y, Wang F (2015) Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res 10:1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li A, Sun H, Xiong X, Qin S, Wang P, Dai L, Zhang Z, Li X, Liu Z (2020) Amentoflavone triggers cell cycle G2/M arrest by interfering with microtubule dynamics and inducing DNA damage in SKOV3 cells. Oncol Lett 20:168. https://doi.org/10.3892/ol.2020.12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Qian Y, Li H, Yang Y, Wang J, Yu W, Li M, Cheng W, Shan L (2022) Amentoflavone-loaded nanoparticles enhanced chemotherapy efficacy by inhibition of AKR1B10. Nanotechnology 33:385101

    Article  Google Scholar 

  • Zhaohui W, Yingli N, Hongli L, Haijing W, Xiaohua Z, Chao F, Liugeng W, Hui Z, Feng T, Linfeng Y (2018) Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett 686:1–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, validation, writing—review, H.S.T., H.J., K.V., S.R., M.V. and K.S.; formal analysis, resources, M.K., and I.R.; data curation, V.R.; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Katrin Sak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have their consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuli, H.S., Joshi, H., Vashishth, K. et al. Chemopreventive mechanisms of amentoflavone: recent trends and advancements. Naunyn-Schmiedeberg's Arch Pharmacol 396, 865–876 (2023). https://doi.org/10.1007/s00210-023-02416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02416-6

Keywords

Navigation