Skip to main content

Advertisement

Log in

Antimicrobial peptides as potential therapy for gastrointestinal cancers

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  • Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D et al (2015) Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 15(1):1–13

    Article  CAS  Google Scholar 

  • Alsaggar M, Al-Tarawneh A, Al Tall Y, Al-Hazabreh M (2021) SAMA peptide, a rationally designed antimicrobial peptide. J Appl Pharm Sci 12(1):182–189

    Google Scholar 

  • Ashby M, Petkova A, Gani J, Mikut R, Hilpert K (2017) Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr Top Med Chem 17(5):537–553

    Article  CAS  PubMed  Google Scholar 

  • Bakare OO, Gokul A, Wu R, Niekerk L-A, Klein A, Keyster M (2021) Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules 11(8):1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN (2003) Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis. J Am Chem Soc 125(29):8841–8845

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AM, Ganz T (2000) Human antimicrobial peptides: analysis and application. Biotechniques 29(4):822–831

    Article  CAS  PubMed  Google Scholar 

  • Cuevas F, Saavedra CJ, Romero-Estudillo I, Boto A, Ordóñez M, Vergara I (2021) Structural diversity using hyp “customizable units”: proof-of-concept synthesis of sansalvamide-related antitumoral peptides. Eur J Org Chem 2021(6):933–943

    Article  CAS  Google Scholar 

  • Davis MR, Singh EK, Wahyudi H, Alexander LD, Kunicki JB, Nazarova LA et al (2012) Synthesis of sansalvamide A peptidomimetics: triazole, oxazole, thiazole, and pseudoproline containing compounds. Tetrahedron 68(4):1029–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC et al (2021) New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med 9:20503121211034370

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL et al (2014) Cancer treatment and survivorship statistics, 2014. CA: Cancer J Clin 64(4):252–71

    PubMed  Google Scholar 

  • Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8(28):46635

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan R, Tong A, Li X, Gao X, Mei L, Zhou L et al (2015) Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomed 10:7291

    CAS  Google Scholar 

  • Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer R, Kohler K, Fotin-Mleczek M, Brock R (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J Biol Chem 279(13):12625–12635

    Article  CAS  PubMed  Google Scholar 

  • Galdiero E, Lombardi L, Falanga A, Libralato G, Guida M, Carotenuto R (2019) Biofilms: novel strategies based on antimicrobial peptides. Pharmaceutics 11(7):322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholibeikian M, Bamoniri A, HoushdarTehrani MH, Mirjalili BBF, Bijanzadeh HR (2020a) Structure-activity relationship studies of longicalcynin A analogues, as anticancer cyclopeptides. Chem Biol Interact 315:108902

    Article  CAS  PubMed  Google Scholar 

  • Gholibeikian M, Bamoniri A, HoushdarTehrani MH, FatemehMirjalili BB, Bijanzadeh HR (2020b) Corrigendum to" Structure-activity relationship studies of longicalcynin A analogues, as anticancer cyclopeptides” "[Chem. Biol. Interact. 315 (2020) 108902, 1-14]. Chem Biol Interact 331:109143

    Article  CAS  PubMed  Google Scholar 

  • Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta (BBA)-Biomembranes 1788(8):1680–1686

    Article  CAS  PubMed  Google Scholar 

  • Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL et al (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Guerra JR, Cárdenas AB, Ochoa-Zarzosa A, Meza JL, Pérez AU, Fierro-Medina R et al (2019) The tetrameric peptide LfcinB (20–25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv 9(36):20497–20504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley B, Frenkel E (eds) (2008) Nanoparticles for drug delivery in cancer treatment. Urologic oncology: seminars and original investigations. Elsevier

    Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta (BBA)-Biomembranes 1778(2):357–75

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Liu R, Xia M, Sun C, Zhong B, Yu J et al (2021) Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacol Res 173:105870

    Article  CAS  PubMed  Google Scholar 

  • Huan Y (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:1–21

    Article  Google Scholar 

  • Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M (2022) Clinical applications and anticancer effects of antimicrobial peptides: from bench to bedside. Front Oncol 12:350

    Article  Google Scholar 

  • Jeong Y-J, Choi Y, Shin J-M, Cho H-J, Kang J-H, Park K-K et al (2014) Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol 68:218–225

    Article  CAS  PubMed  Google Scholar 

  • Kemik O, Kemik A, Sumer A, Begenik H, Purisa S, Tuzun S (2013) Human neutrophil peptides 1, 2 and 3 (HNP 1–3): elevated serum levels in colorectal cancer and novel marker of lymphatic and hepatic metastasis. Hum Exp Toxicol 32(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides. Drugs 63(4):389–406

    Article  CAS  PubMed  Google Scholar 

  • Kong G-M, Tao W-H, Diao Y-L, Fang P-H, Wang J-J, Bo P et al (2016) Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol 22(11):3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA (2022) Biophysical characterization of LTX-315 anticancer peptide interactions with model membrane platforms: effect of membrane surface charge. Int J Mol Sci 23(18):10558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J et al (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970

    Article  PubMed  PubMed Central  Google Scholar 

  • Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P Jr et al (2015) Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chem Int Ed 54(35):10149–10154

    Article  CAS  Google Scholar 

  • Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S et al (2020) Antimicrobial peptides in farm animals: an updated review on its diversity, function, modes of action and therapeutic prospects. Veterinary Sciences 7(4):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS et al (2008) Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett 271(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Lee H-T, Lee C-C, Yang J-R, Lai JZ, Chang KY (2015) A large-scale structural classification of antimicrobial peptides. BioMed Res Int 2015:1

    Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang X, Ji J, Zhang S-L, He Y (2019) Novel nannocystin A analogues as anticancer therapeutics: synthesis, biological evaluations and structure–activity relationship studies. Eur J Med Chem 170:99–111

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lai Z, Zhu L, Ding X, Tong X, Wang Z et al (2021) Novel amorphous solid dispersion based on natural deep eutectic solvent for enhancing delivery of anti-tumor RA-XII by oral administration in rats. Eur J Pharm Sci 166:105931

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4(4):612–624

    Article  CAS  PubMed  Google Scholar 

  • Maijaroen S, Jangpromma N, Daduang J, Klaynongsruang S (2018) KT2 and RT2 modified antimicrobial peptides derived from crocodylus siamensis leucrocin I show activity against human colon cancer HCT-116 cells. Environ Toxicol Pharmacol 62:164–176

    Article  CAS  PubMed  Google Scholar 

  • Maraming P, Maijaroen S, Klaynongsruang S, Boonsiri P, Daduang S, Chung J-G et al (2018) Antitumor ability of KT2 peptide derived from leukocyte peptide of Crocodile against human HCT116 colon cancer xenografts. In Vivo 32(5):1137–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maraming P, Klaynongsruang S, Boonsiri P, Peng SF, Daduang S, Leelayuwat C et al (2019) The cationic cell-penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells. J Cell Physiol 234(12):22116–22129

    Article  CAS  PubMed  Google Scholar 

  • Marsh D, Jost M, Peggion C, Toniolo C (2007) TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes. Biophys J 92(2):473–481

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Xu G, Li J, Liu W, Jia W, Ma J et al (2017) Bovine lactoferricin P13 triggers ROS-mediated caspase-dependent apoptosis in SMMC7721 cells. Oncol Lett 13(1):511–517

    Article  CAS  PubMed  Google Scholar 

  • Moon D-O, Park S-Y, Choi YH, Kim ND, Lee C, Kim G-Y (2008) Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon 51(1):112–120

    Article  CAS  PubMed  Google Scholar 

  • Moore A (2003) The big and small of drug discovery: Biotech versus pharma: advantages and drawbacks in drug development. EMBO Rep 4(2):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T et al (2022) The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinicalMedicine 47:101404

    Article  PubMed  PubMed Central  Google Scholar 

  • Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H (2017) Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 26(11):989–998

    Article  CAS  PubMed  Google Scholar 

  • Nomula R, Pratapure MS, Kontham R (2022) Studies directed toward the total synthesis of nannocystin A. ChemistrySelect 7(42):e202203893

    Article  CAS  Google Scholar 

  • Norouzi Z, Salimi A, Halabian R, Fahimi H (2018) Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb Pathog 123:183–189

    Article  CAS  PubMed  Google Scholar 

  • Pan W-R, Chen P-W, Chen Y-L, Hsu H-C, Lin C-C, Chen W-J (2013) Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci 96(12):7511–7520

    Article  CAS  PubMed  Google Scholar 

  • Panjeta A, Preet S (2020) Anticancer potential of human intestinal defensin 5 against 1, 2-dimethylhydrazine dihydrochloride induced colon cancer: a therapeutic approach. Peptides 126:170263

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Yi K-S, Matsuzaki K, Kim MS, Kim SC (2000) Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci 97(15):8245-50

  • Poock C, Kalesse M (2017) Total synthesis of nannocystin Ax. Org Lett 19(17):4536–4539

    Article  CAS  PubMed  Google Scholar 

  • Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J et al (2012) Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancerLL-37 induces AIF-and EndoG-mediated cell death. Can Res 72(24):6512–6523

    Article  CAS  Google Scholar 

  • Ridyard KE, Overhage J (2021) The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics 10(6):650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SA (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RA, Pan P-S, Pan C-M, Ravula S, Lapera S, Singh EK et al (2007) Synthesis of second-generation sansalvamide A derivatives: novel templates as potential antitumor agents. J Org Chem 72(6):1980–2002

    Article  CAS  PubMed  Google Scholar 

  • Roudi R, Syn NL, Roudbary M (2017) Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 8:1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadat SM, Jahan ST, Haddadi A (2016) Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J Biomater Nanobiotechnol 7(02):91

    Article  CAS  Google Scholar 

  • Sancho-Vaello E, Gil-Carton D, François P, Bonetti E-J, Kreir M, Pothula KR et al (2020) The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Sci Rep 10(1):1–16

    Article  Google Scholar 

  • Shin J-M, Jeong Y-J, Cho H-J, Park K-K, Chung I-K, Lee I-K et al (2013) Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS ONE 8(7):e69380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L et al (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33(1):18–26

    Article  PubMed  Google Scholar 

  • Son S, Jang M, Lee B, Hong Y-S, Ko S-K, Jang J-H et al (2018) Ulleungdin, a lasso peptide with cancer cell migration inhibitory activity discovered by the genome mining approach. J Nat Prod 81(10):2205–2211

    Article  CAS  PubMed  Google Scholar 

  • Spiliopoulos S, Festas G, Reppas L, Brountzos E (2019) Intra-arterial administration of cell-based biological agents for ischemic stroke therapy. Expert Opin Biol Ther 19(3):249–259

    Article  CAS  PubMed  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48(3):416–427

    Article  CAS  PubMed  Google Scholar 

  • Sudheendra U, Dhople V, Datta A, Kar RK, Shelburne CE, Bhunia A et al (2015) Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Eur J Med Chem 91:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zheng C, Webster TJ (2017) Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int J Nanomed 12:73

    Article  CAS  Google Scholar 

  • Tan M, Liao C, Liang L, Yi X, Zhou Z, Wei G (2022) Recent advances in recombinase polymerase amplification: principle, advantages, disadvantages and applications. Front Cell Infect Microbiol 12:1744

    Article  Google Scholar 

  • Tian Y, Xu X, Ding Y, Hao X, Bai Y, Tang Y et al (2018) Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R, 3S)-Epoxide in nannocystin A. Eur J Med Chem 150:626–632

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8(6):259–266

    Article  CAS  Google Scholar 

  • Umerska A, Cassisa V, Bastiat G, Matougui N, Nehme H, Manero F et al (2017) Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. Int J Nanomed 12:5687

    Article  CAS  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280(1):22–35

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJ, Schneider VA, Agustiandari H, Van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ et al (2014) Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS ONE 9(4):e95939

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G (2012) Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Current Biotechnology 1(1):72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, et al (2019b) Design of antimicrobial peptides: progress made with human cathelicidin LL-37. Antimicrobial Peptides 215–40. https://link.springer.com/chapter/10.1007/978-981-13-3588-4_12

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wang X, Zhang J, Wu H, Li Y, Conti PS, Chen K (2018) PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric sansalvamide A decapeptide. Amino Acids 50(7):897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Guo D, He J, Song L, Chen H, Zhang Z et al (2019a) Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun 512(4):819–824

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen T, Zhang N, Yang M, Li B, Lü X et al (2021) Withdrawal: melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IκBα kinase-NFκB. J Biol Chem 296:100767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang J, Li L, Feng L, Wang Y-R, Wang Z et al (2021) RA-XII, a bicyclic hexapeptidic glucoside isolated from Rubia yunnanensis Diels, exerts antitumor activity by inhibiting protective autophagy and activating Akt-mTOR pathway in colorectal cancer cells. J Ethnopharmacol 266:113438

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang J, Han Z, Ma L, Li Y (2022) 18F-labeled dimer-sansalvamide A cyclodecapeptide: a novel diagnostic probe to discriminate pancreatic cancer from inflammation in a nude mice model. J Cancer 13(6):1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci 97(24):13003-8

  • Wu X, Zhao B, Cheng Y, Yang Y, Huang C, Meng X et al (2015) Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells. Toxicol Appl Pharmacol 288(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ding Z, Cheng B, Cui Z (2021) The inhibitory effect of human DEFA5 in growth of gastric cancer by targeting BMI1. Cancer Sci 112(3):1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi Y, Xu P (2021) Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 14(10):101174

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Wei J, Zhao S, Guo B, Meng F, Klumperman B et al (2021) Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. J Control Release 336:262–273

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Dong X, Li H, Cao M, Sun D, He S et al (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 135(05):584–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie M, Liu D, Yang Y (2020) Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10(7):200004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yao Y, Wang L, Chen H, Tan N (2021) Hyaluronic acid coated liposomes Co-delivery of natural cyclic peptide RA-XII and mitochondrial targeted photosensitizer for highly selective precise combined treatment of colon cancer. Int J Nanomed 16:4929

    Article  Google Scholar 

  • Yamazaki T, Wennerberg E, Hensler M, Buqué A, Kraynak J, Fucikova J et al (2021) LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. Oncoimmunology 10(1):1962592

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196

    CAS  PubMed  Google Scholar 

  • Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta (BBA)-Biomembranes 1758(9):1436–49

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu X, Zhang M, Wang X, Bai X, Li H et al (2016) MicroRNA-663a is downregulated in non-small cell lung cancer and inhibits proliferation and invasion by targeting JunD. BMC Cancer 16(1):1–10

    Article  Google Scholar 

  • Zhang S-K, Song J-w, Gong F, Li S-B, Chang H-Y, Xie H-M et al (2016) Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6(1):1–13

    Google Scholar 

  • Zhang C, Yang M, Ericsson AC (2019) Antimicrobial peptides: potential application in liver cancer. Front Microbiol 10:1257

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhen J, Zhang R, Wanyan Y, Liu K, Yuan X et al (2022) Cathelicidin hCAP18/LL-37 promotes cell proliferation and suppresses antitumor activity of 1, 25 (OH) 2D3 in hepatocellular carcinoma. Cell Death Discovery 8(1):1–13

    Google Scholar 

  • Zhou J, Liu Y, Shen T, Chen L, Zhang C, Cai K et al (2019) Antimicrobial activity of the antibacterial peptide PMAP-36 and its analogues. Microb Pathog 136:103712

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by X.Y., and L.L. and Z.G. commented and improved the manuscript. All authors collaborated and commented on previous versions of the manuscript. Finally, all authors read and approved the final manuscript. C.H, L.L. and Z.G. were responsible for coordinating the authors, finalized and submitted the paper. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Cui Hua.

Ethics declarations

Ethics approval

Ethics approval for this type of article (a review) is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hua, C., Lin, L. et al. Antimicrobial peptides as potential therapy for gastrointestinal cancers. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2831–2841 (2023). https://doi.org/10.1007/s00210-023-02536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02536-z

Keywords

Navigation