Skip to main content

Anticancer Peptides: Prospective Innovation in Cancer Therapy

  • Chapter
  • First Online:
Host Defense Peptides and Their Potential as Therapeutic Agents

Abstract

Current cancer treatments require improvements in selectivity and efficacy. Surgery, radiation, and chemotherapy approaches result in patient’s suffering over time due to the development of severe side-effects that simultaneously condition adherence to therapy. Biologically active peptides, in particular antimicrobial peptides (AMPs), are versatile molecules in terms of biological activities. The cytotoxic activities of several AMPs turn this group of molecules into an amazing pool of new templates for anticancer drug development. However, several unmet challenges limit application of peptides in cancer therapy. The mechanism(s) of action of the peptides need better description and understanding, and innovative targets have to be discovered and explored, facilitating drug design and development. In this chapter, we explore the natural occurring AMPs as potential new anticancer peptides (ACPs) for cancer prevention and treatment. Their modes of action, selectivity to tumor compared to normal cells, preferential targets, and applications, but also their weaknesses, are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L (2011) Oncolytic activities of host defense peptides. Int J Mol Sci 12(11):8027–8051. doi:10.3390/ijms12118027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H (2005) Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 5:8. doi:10.1186/1471-2407-5-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrethsen J, Moller CH, Olsen J, Raskov H, Gammeltoft S (2006) Human neutrophil peptides 1, 2 and 3 are biochemical markers for metastatic colorectal cancer. Eur J Cancer 42(17):3057–3064. doi:10.1016/j.ejca.2006.05.039

    Article  CAS  PubMed  Google Scholar 

  • Alves CS, Melo MN, Franquelim HG, Ferre R, Planas M, Feliu L, Bardaji E, Kowalczyk W, Andreu D, Santos NC, Fernandes MX, Castanho MARB (2010) Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR. J Biol Chem 285(36):27536–27544. doi:10.1074/jbc.M110.130955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arouri A, Dathe M, Blume A (2009) Peptide induced demixing in PG/PE lipid mixtures: A mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Biochimica Et Biophysica Acta-Biomembranes 1788(3):650–659. doi:10.1016/j.bbamem.2008.11.022

    Article  CAS  Google Scholar 

  • Barras D, Widmann C (2011) Promises of apoptosis-inducing peptides in cancer therapeutics. Curr Pharm Biotechnol 12(8):1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Singh A, Jothy S, Fraser R, Esch F, Solomon S (1992) The levels and biologic action of the human neutrophil granule peptide Hp-1 in lung-tumors. Peptides 13(1):133–139. doi:10.1016/0196-9781(92)90152-S

    Article  CAS  PubMed  Google Scholar 

  • Bhutia SK, Maiti TK (2008) Targeting tumors with peptides from natural sources. Trends Biotechnol 26(4):210–217. doi:10.1016/j.tibtech.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Chan SC, Hui L, Chen HM (1998) Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Res 18(6A):4467–4474

    CAS  PubMed  Google Scholar 

  • Chaudhary J, Munshi M (1995) Scanning electron-microscopic analysis of breast aspirates. Cytopathology 6(3):162–167. doi:10.1111/j.1365-2303.1995.tb00469.x

    Article  CAS  PubMed  Google Scholar 

  • Chen CX, Hu J, Zeng P, Pan F, Yaseen M, Xu H, Lu JR (2014) Molecular mechanisms of anticancer action and cell selectivity of short alpha-helical peptides. Biomaterials 35(5):1552–1561. doi:10.1016/j.biomaterials.2013.10.082

    Article  CAS  PubMed  Google Scholar 

  • Conibear AC, Craik DJ (2014) The chemistry and biology of theta defensins. Angewandte Chemie-International Edition 53(40):10612–10623. doi:10.1002/anie.201402167

    Article  CAS  Google Scholar 

  • Craik DJ (2012) Host-defense activities of cyclotides. Toxins 4(2):139–156. doi:10.3390/toxins4020139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147. doi:10.1111/cbdd.12055

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N, Auada AV, Farias CF, Pasqualoto KF, Rodrigues CP, Barbuto JA, Levy D, Bydlowski SP, de Sa-Junior PL, Travassos LR, Lebrun I (2015) Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68:113–119. doi:10.1016/j.peptides.2014.09.024

    Article  PubMed  Google Scholar 

  • Droin N, Hendra JB, Ducoroy P, Solary E (2009) Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 72(6):918–927. doi:10.1016/j.jprot.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  • Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Lokke C, Ponthan F, Johnsen JI, Sveinbjornsson B, Kogner P, Flaegstad T, Rekdal O (2006) The antimicrobial peptide, Lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer 119(3):493–500. doi:10.1002/ijc.21886

    Article  CAS  PubMed  Google Scholar 

  • Evans J, Wang YD, Shaw KP, Vernon LP (1989) Cellular-responses to pyrularia thionin are mediated by Ca-2+ influx and phospholipase-A2 activation and are inhibited by thionin tyrosine iodination. Proc Natl Acad Sci USA 86(15):5849–5853. doi:10.1073/pnas.86.15.5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang XY, Chen W, Fan JT, Song R, Wang L, Gu YH, Zeng GZ, Shen Y, Wu XF, Tan NH, Xu Q, Sun Y (2013) Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1-AKT interaction. Toxicol Appl Pharmacol 267(1):95–103. doi:10.1016/j.taap.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  • Fernebro J (2011) Fighting bacterial infections-future treatment options. Drug Resist Updates 14(2):125–139. doi:10.1016/j.drup.2011.02.001

    Article  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  • Freire JM, Gaspar D, Veiga AS, Castanho MARB (2015) Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 21(3):178–185. doi:10.1002/psc.2741

    Article  CAS  PubMed  Google Scholar 

  • Furlong SJ, Ridgway ND, Hoskin DW (2008) Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin. Int J Oncol 32(3):537–544

    CAS  PubMed  Google Scholar 

  • Galvez AF, Chen N, Macasieb J, de Lumen BO (2001) Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res 61(20):7473–7478

    CAS  PubMed  Google Scholar 

  • Ganz T, Lehrer RI (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 10(1):41–44. doi:10.1016/S0952-7915(98)80029-0

    Article  CAS  PubMed  Google Scholar 

  • Gaspar D, Veiga AS, Sinthuvanich C, Schneider JP, Castanho MARB (2012) Anticancer peptide SVS-1: efficacy precedes membrane neutralization. Biochemistry 51(32):6263–6265. doi:10.1021/bi300836r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294. doi:10.3389/fmicb.2013.00294

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho MARB (2015) Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochimica Et Biophysica Acta-Molecular Cell Res 1853(2):308–316. doi:10.1016/j.bbamcr.2014.11.006

    Article  CAS  Google Scholar 

  • Gera JF, Lichtenstein A (1991) Human neutrophil peptide defensins induce single-strand DNA breaks in target-cells. Cell Immunol 138(1):108–120. doi:10.1016/0008-8749(91)90136-Y

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Rodriguez JJ, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int. doi:10.1155/2015/735087

    Google Scholar 

  • Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234. doi:10.1002/med.20252

    Article  CAS  PubMed  Google Scholar 

  • He WJ, Chan LY, Zeng GZ, Daly NL, Craik DJ, Tan NH (2011) Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides 32(8):1719–1723. doi:10.1016/j.peptides.2011.06.016

    Article  CAS  PubMed  Google Scholar 

  • Henriques ST, Huang YH, Castanho MARB, Bagatolli LA, Sonza S, Tachedjian G, Daly NL, Craik DJ (2012) Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J Biol Chem 287(40):33629–33643. doi:10.1074/jbc.M112.372011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Ledesma B, Hsieh CC, de Lumen BO (2009) Lunasin, a novel seed peptide for cancer prevention. Peptides 30(2):426–430. doi:10.1016/j.peptides.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  • Holterman DA, Diaz JI, Blackmore PF, Davis JW, Schellhammer PF, Corica A, Semmes OJ, Vlahou A (2006) Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol-Semin Original Inv 24(2):97–108. doi:10.1016/j.urolonc.2005.07.010

    Article  CAS  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochimica Et Biophysica Acta-Biomembranes 1778(2):357–375. doi:10.1016/j.bbamem.2007.11.008

    Article  CAS  Google Scholar 

  • Hsieh EA, Chai CM, de Lumen BO, Neese RA, Hellerstein MK (2004) Dynamics of keratinocytes in vivo using (H2O)-H-2 labeling: a sensitive marker of epidermal proliferation state. J Inv Dermatol 123(3):530–536. doi:10.1111/j.0022-202X.2004.23303.x

    Article  CAS  Google Scholar 

  • Huang W, Seo J, Willingham SB, Czyzewski AM, Gonzalgo ML, Weissman IL, Barron AE (2014) Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity. Plos One 9(2). doi:10.1371/journal.pone.0090397

    Google Scholar 

  • Hughes P, Dennis E, Whitecross M, Llewellyn D, Gage P (2000) The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem 275(2):823–827. doi:10.1074/jbc.275.2.823

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30(4):660–668. doi:10.1016/j.peptides.2008.12.019

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Andersen JH, Uhlin-Hansen L, Gutteberg TJ, Rekdal O (2004) Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Res 61(2):101–109. doi:10.1016/j.antiviral.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  • Kohno M, Horibe T, Haramoto M, Yano Y, Ohara K, Nakajima O, Matsuzaki K, Kawakami K (2011) A novel hybrid peptide targeting EGFR-expressing cancers. Eur J Cancer 47(5):773–783. doi:10.1016/j.ejca.2010.10.021

    Article  CAS  PubMed  Google Scholar 

  • Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasqualini R (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17(8):768–774. doi:10.1038/11703

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama I, Miyazaki A, Tsuda Y, Yoshida H, Mizushina Y (2013) Inhibitory effect of novel somatostatin peptide analogues on human cancer cell growth based on the selective inhibition of DNA polymerase beta. Bioorg Med Chem 21(2):403–411. doi:10.1016/j.bmc.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  • Lacerda AF, Vasconcelos EA, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116. doi:10.3389/fmicb.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung HW, Wang Z, Yue GGL, Zhao SM, Lee JKM, Fung KP, Leung PC, Lau CBS, Tan NH (2015) Cyclopeptide RA-V inhibits cell adhesion and invasion in both estrogen receptor positive and negative breast cancer cells via PI3 K/AKT and NF-kappa B signaling pathways. Biochimica Et Biophys Acta-Mol Cell Res 1853(8):1827–1840. doi:10.1016/j.bbamcr.2015.04.020

    Article  CAS  Google Scholar 

  • Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zarate L, Villagomez-Gomez E, Lopez-Meza JE, Ochoa-Zarzosa A (2008) Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 30(10):1713–1719. doi:10.1007/s10529-008-9756-8

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4(4):612–624. doi:10.1158/1535-7163.Mct-04-0077

    Article  CAS  PubMed  Google Scholar 

  • Mai JC, Mi ZB, Kim SH, Ng B, Robbins PD (2001) A proapoptotic peptide for the treatment of solid tumors. Cancer Res 61(21):7709–7712

    CAS  PubMed  Google Scholar 

  • Medina SH, Schneider JP (2015) Cancer cell surface induced peptide folding allows intracellular translocation of drug. J Controlled Release 209:317–326. doi:10.1016/j.jconrel.2015.05.267

    Article  CAS  Google Scholar 

  • Mello EO, Ribeiro SFF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62(4):1209–1217. doi:10.1007/s00284-010-9847-3

    Article  CAS  PubMed  Google Scholar 

  • Mohri Y, Mohri T, Wei W, Qi YJ, Martin A, Miki C, Kusunoki M, Ward DG, Johnson PJ (2009) Identification of macrophage migration inhibitory factor and human neutrophil peptides 1-3 as potential biomarkers for gastric cancer. Br J Cancer 101(2):295–302. doi:10.1038/sj.bjc.6605138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Frontiers Microbiol 4. doi:10.3389/Fmicb.2013.00321

  • Muller CA, Markovic-Lipkovski J, Klatt T, Gamper J, Schwarz G, Beck H, Deeg M, Kalbacher H, Widmann S, Wessels JT, Becker V, Muller GA, Flad T (2002) Human alpha-defensins HNPs-1, -2, and -3 in renal cell carcinoma: influences on tumor cell proliferation. Am J Pathol 160(4):1311–1324. doi:10.1016/S0002-9440(10)62558-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngai PHK, Ng TB (2005) Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol-Biochimie Et Biologie Cellulaire 83(2):212–220. doi:10.1139/O05-037

    Article  CAS  Google Scholar 

  • Ortiz-Martinez M, Winkler R, Garcia-Lara S (2014) Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 111:165–183. doi:10.1016/j.jprot.2014.03.044

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7(1):43–50. doi:10.1097/00054725-200102000-00007

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62(7–8):784–790. doi:10.1007/s00018-005-4560-2

    Article  CAS  PubMed  Google Scholar 

  • Paredes-Gamero EJ, Casaes-Rodrigues RL, Moura GE, Domingues TM, Buri MV, Ferreira VH, Trindade ES, Moreno-Ortega AJ, Cano-Abad MF, Nader HB, Ferreira AT, Miranda A, Justo GZ, Tersariol IL (2012) Cell-permeable gomesin peptide promotes cell death by intracellular Ca(2+) overload. Mol Pharm 9(9):2686–2697. doi:10.1021/mp300251j

    Article  CAS  PubMed  Google Scholar 

  • Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JAE, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 3. doi:10.7554/eLife.01808

  • Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547. doi:10.1016/j.ijantimicag.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides—challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781. doi:10.1016/j.chemphyslip.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues EG, Dobroff ASS, Cavarsan CF, Paschoalin T, Nimrichter L, Mortara RA, Santos EL, Fazio MA, Miranda A, Daffre S, Travassos LR (2008) Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 10(1):61–68. doi:10.1593/neo.07885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12(8):1101–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel U (2005) Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 345(1):55–65. doi:10.1016/j.ab.2005.07.033

    Article  CAS  PubMed  Google Scholar 

  • Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2015) Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: a critical review. Comprehensive Rev. Food Sci. Food Safety 14(2):123–138. doi:10.1111/1541-4337.12126

    Article  CAS  Google Scholar 

  • Salas CE, Badillo-Corona JA, Ramirez-Sotelo G, Oliver-Salvador C (2015) Biologically active and antimicrobial peptides from plants. Biomed Res Int. doi:10.1155/2015/102129

    PubMed  PubMed Central  Google Scholar 

  • Schroder-Borm H, Bakalova R, Andra J (2005) The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Lett 579(27):6128–6134. doi:10.1016/j.febslet.2005.09.084

    Article  PubMed  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194. doi:10.1016/j.ejphar.2009.08.043

    Article  CAS  PubMed  Google Scholar 

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286. doi:10.3390/molecules171012276

    Article  CAS  PubMed  Google Scholar 

  • Sharma SV (1992) Melittin resistance - a counterselection for ras transformation. Oncogene 7(2):193–201

    CAS  PubMed  Google Scholar 

  • Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HHS, Silva RSP, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TMB, Franco OL (2012) Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 98(4):322–331. doi:10.1002/bip.22071

    Article  CAS  PubMed  Google Scholar 

  • Sinthuvanich C, Veiga AS, Gupta K, Gaspar D, Blumenthal R, Schneider JP (2012) Anticancer beta-hairpin peptides: membrane-induced folding triggers activity. J Am Chem Soc 134(14):6210–6217. doi:10.1021/ja210569f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stec B (2006) Plant thionins—the structural perspective. Cell Mol Life Sci 63(12):1370–1385. doi:10.1007/s00018-005-5574-5

    Article  CAS  PubMed  Google Scholar 

  • Svangard E, Burman R, Gunasekera S, Lovborg H, Gullbo J, Goransson U (2007) Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod 70(4):643–647. doi:10.1021/np070007v

    Article  PubMed  Google Scholar 

  • Tanaka T (1997) Chemoprevention of human cancer: biology and therapy. Crit Rev Oncol Hematol 25(3):139–174. doi:10.1016/S1040-8428(97)00232-1

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T (2009) Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog 8:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MARB, Henriques ST (2013a) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica Et Biophysica Acta-Biomembr 1828(3):944–955. doi:10.1016/j.bbamem.2012.12.002

    Article  CAS  Google Scholar 

  • Torcato IM, Huang YH, Franquelim HG, Gaspar DD, Craik DJ, Castanho MARB, Henriques ST (2013b) The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability. ChemBioChem 14(15):2013–2022. doi:10.1002/cbic.201300274

    Article  CAS  PubMed  Google Scholar 

  • Vesely BA, Eichelbaum EJ, Alli AA, Sun Y, Gower WR, Vesely DL (2006) Urodilatin and four cardiac hormones decrease human renal carcinoma cell numbers. Eur J Clin Invest 36(11):810–819. doi:10.1111/j.1365-2362.2006.01721.x

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470. doi:10.1126/science.1099191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KR, Yan JX, Zhang BZ, Song JJ, Jia PF, Wang R (2009a) Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett 278(1):65–72. doi:10.1016/j.canlet.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Li D, Shi HS, Wen YJ, Yang L, Xu N, Chen XC, Chen X, Chen P, Li J, Deng HX, Wang CT, Xie G, Huang S, Mao YQ, Chen LJ, Zhao X, Wei YQ (2009b) Intratumoral expression of mature human neutrophil peptide-1 mediates antitumor immunity in mice. Clin Cancer Res 15(22):6901–6911. doi:10.1158/1078-0432.CCR-09-0484

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Li D, Shi HS, Wen YJ, Yang L, Xu N, Chen XC, Chen X, Chen P, Li J, Deng HX, Wang CT, Xie G, Huang S, Mao YQ, Chen LJ, Zhao X, Wei YQ (2009c) Intratumoral expression of mature human neutrophil peptide-1 mediates antitumor immunity in mice. Clin Cancer Res 15(22):6901–6911. doi:10.1158/1078-0432.CCR-09-0484

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Ng TB (2005a) Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides 26 (11):2086–2092. doi:10.1016/j.peptides.2005.03.004

    Google Scholar 

  • Wong JH, Ng TB (2005b) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26(7):1120–1126. doi:10.1016/j.peptides.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Wu DD, Gao YF, Qi YM, Chen LX, Ma YF, Li YZ (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351(1):13–22. doi:10.1016/j.canlet.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H, Harashima H (2005) Mitochondrial delivery of mastoparan with transferrin liposornes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303(1–2):1–7. doi:10.1016/j.ijpharm.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Yang WH, Luo DF, Wang SX, Wang R, Chen R, Liu Y, Zhu T, Ma XY, Liu RH, Xu G, Meng L, Lu YP, Zhou JF, Ma D (2008) TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res 14(17):5494–5502. doi:10.1158/1078-0432.CCR-08-0233

    Article  CAS  PubMed  Google Scholar 

  • Yi ZF, Cho SG, Zhao H, Wu YY, Luo J, Li DL, Yi T, Xu X, Wu ZR, Liu M (2009) A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int J Cancer 124(4):843–852. doi:10.1002/ijc.24027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao BX, Zhao Y, Huang Y, Luo LM, Song P, Wang X, Chen S, Yu KF, Zhang X, Zhang Q (2012) The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials 33(8):2508–2520. doi:10.1016/j.biomaterials.2011.11.078

    Article  CAS  PubMed  Google Scholar 

  • Zheng LH, Wang YJ, Sheng J, Wang F, Zheng Y, Lin XK, Sun M (2011) Antitumor peptides from marine organisms. Marine Drugs 9(10):1840–1859. doi:10.3390/md9101840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

FundaĂ§Ă£o para a CiĂªncia e a Tecnologia—MinistĂ©rio da EducaĂ§Ă£o e CiĂªncia (FCT-MEC, Portugal) is acknowledged for funding through SFRH/BPD/73500/2010 fellowship to Diana Gaspar and project grant PTDC/BBB-BQB/1693/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Gaspar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaspar, D., Castanho, M.A. (2016). Anticancer Peptides: Prospective Innovation in Cancer Therapy. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_4

Download citation

Publish with us

Policies and ethics