Skip to main content
Log in

A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder that is associated with the accumulation of triglycerides (TG) in hepatocytes. Resveratrol (RSV), as a natural product, and metformin have been reported to have potential lipid-lowering effects for the treatment of NAFLD via autophagy, but the combined effects of both have not yet been studied. The current study aimed to investigate the role of autophagy in the lipid-lowering effects of RSV, alone and in combination with metformin, on the hepatic steatosis model of HepG2 cells and elucidate the mechanism of action. Triglyceride measurement and real-time PCR showed that RSV-metformin reduced lipid accumulation and the expression of lipogenic genes in palmitic acid (PA)-induced HepG2 cells. Additionally, the LDH release assay indicated that this combination protected HepG2 cells against PA-induced cell death through autophagy. The western blotting analysis revealed that RSV-metformin induced autophagy by reducing the expression of p62 and increasing LC3-I and LC3-II proteins. This combination also enhanced cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels in HepG2 cells. Furthermore, SIRT1 inhibitor treatment inhibited autophagy induced by RSV-metformin, which indicated the autophagy induction is SIRT1-dependent. This study demonstrated for the first time that RSV-metformin reduced hepatic steatosis by triggering autophagy via the cAMP/AMPK/SIRT1 signaling pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analyzed during this study are available from the corresponding author by reasonable request.

References

  • Aguirre L, Portillo MP, Hijona E, Bujanda L (2014) Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol: WJG 20(23):7366

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed MH, Byrne CD (2007) Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discovery Today 12(17–18):740–747

    Article  CAS  PubMed  Google Scholar 

  • Ahmed LA, Salem MB, El-Din SHS, El-Lakkany NM, Ahmed HO, Nasr SM et al (2020) Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: role of LPS/TLR4 and autophagy pathways. Eur J Pharmacol 887:173461

    Article  CAS  PubMed  Google Scholar 

  • A Al Saedi A C Goodman E D Myers A Hayes G Duque 2020 Rapamycin affects palmitate-induced lipotoxicity in osteoblasts by modulating apoptosis and autophagy The Journals of Gerontology: Series A 75 1 58 63

  • Allaire M, Rautou P-E, Codogno P, Lotersztajn S (2019) Autophagy in liver diseases: time for translation? J Hepatol 70(5):985–998

    Article  PubMed  Google Scholar 

  • Andrade JMO, Paraíso AF, de Oliveira MVM, Martins AME, Neto JF, Guimarães ALS et al (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30(7–8):915–919

    Article  CAS  PubMed  Google Scholar 

  • Arani KS, Ardakani AT, Goudarzi RM, reza TALARI H, Kamran H, Akbari H, et al (2014) Effect of vitamin E and metformin on fatty liver disease in obese children-randomized clinical trial. Iranian journal of public health 43(10):1417

    Google Scholar 

  • Arrese M, Cabrera D, Kalergis AM, Feldstein AE (2016) Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 61(5):1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujanda L, Hijona E, Larzabal M, Beraza M, Aldazabal P, García-Urkia N et al (2008) Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol 8(1):1–8

    Article  Google Scholar 

  • Cetrullo S, D’Adamo S, Tantini B, Borzi RM, Flamigni F. (2015) mTOR, AMPK, and Sirt1: key players in metabolic stress management. Critical Reviews™ in Eukaryotic Gene Expression 25(1)

  • Chen M-l, Yi L, Jin X, Liang X-y, Zhou Y, Zhang T et al (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9(12):2033–45

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li L, Liu X, Luo R, Liao G, Li L et al (2018) Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sci 203:291–304

    Article  CAS  PubMed  Google Scholar 

  • Czaja MJ, Ding W-X, Donohue TM, Friedman SL, Kim J-S, Komatsu M et al (2013) Functions of autophagy in normal and diseased liver. Autophagy 9(8):1131–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Oliveira CPMS, Stefano JT, De Siqueira ERF, Silva LS, de Campos Mazo DF, Lima VMR et al (2008) Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis. Hepatol Res 38(2):159–165

    PubMed  Google Scholar 

  • De Wit NJ, Afman LA, Mensink M, Müller M (2012) Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol 57(6):1370–1373

    Article  PubMed  Google Scholar 

  • Ding S, Jiang J, Zhang G, Bu Y, Zhang G, Zhao X (2017a) Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS ONE 12(8):e0183541

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding R-B, Bao J, Deng C-X (2017b) Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13(7):852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte N, Coelho IC, Patarrão RS, Almeida JI, Penha-Gonçalves C, Macedo MP (2015) How inflammation impinges on NAFLD: a role for Kupffer cells. Biomed Res Int 2015

  • Duseja A, Das A, Dhiman RK, Chawla YK, Thumburu KK, Bhadada S et al (2007) Metformin is effective in achieving biochemical response in patients with nonalcoholic fatty liver disease (NAFLD) not responding to lifestyle interventions. Ann Hepatol 6(4):222–226

    Article  CAS  PubMed  Google Scholar 

  • Elkhwanky M-S, Hakkola J (2018) Extranuclear sirtuins and metabolic stress. Antioxid Redox Signal 28(8):662–676

    Article  CAS  PubMed  Google Scholar 

  • Engin A. (2017) Non-alcoholic fatty liver disease. Obesity and Lipotoxicity 443–67

  • Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43(S1):S99–S112

    Article  CAS  PubMed  Google Scholar 

  • Ferguson D, Finck BN (2021) Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol 17(8):484–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997) Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med 103(6):491–497

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Villanueva AH, Oun A, Buist-Homan M, Blokzijl H, Faber KN et al (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1866(3):165621

    Article  CAS  PubMed  Google Scholar 

  • Haukeland JW, Konopski Z, Eggesbø HB, von Volkmann HL, Raschpichler G, Bjøro K et al (2009) Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol 44(7):853–860

    Article  CAS  PubMed  Google Scholar 

  • Heebøll S, Thomsen KL, Pedersen SB, Vilstrup H, George J, Grønbæk H (2014) Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World J Hepatol 6(4):188

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y et al (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283(29):20015–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C-Z, Tung Y-T, Hsia S-M, Wu C-H, Yen G-C (2017) The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food & function 8(2):842–50

    Article  CAS  Google Scholar 

  • Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23(3):305–314

    Article  CAS  PubMed  Google Scholar 

  • Jarrar M, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C et al (2008) Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 27(5):412–421

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Wang Y, Deng Y, Li X, Jiang Z (2015) Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis 14(1):1–9

    Article  CAS  Google Scholar 

  • Jiang X-s, Chen X-m, Wan J-m, Gui H-b, Ruan X-z, Du X-g (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7(1):1–13

    Google Scholar 

  • Kang R, Zeh H, Lotze M, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke P-Y (2019) Diverse functions of autophagy in liver physiology and liver diseases. Int J Mol Sci 20(2):300

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendall DL, Amin R, Clayton PE (2014) Metformin in the treatment of obese children and adolescents at risk of type 2 diabetes. Pediatr Drugs 16(1):13–20

    Article  Google Scholar 

  • Khorzoughi RB, Namvarjah F, Teimouri M, Hosseini H, Meshkani R (2019) In-vitro synergistic effect of metformin and berberine on high glucose-induced lipogenesis. Iranian Journal of Pharmaceutical Research: IJPR 18(4):1921

    CAS  Google Scholar 

  • Kotas ME, Gorecki MC, Gillum MP (2013) Sirtuin-1 is a nutrient-dependent modulator of inflammation. Adipocyte 2(2):113–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN (2021) Autophagy in liver diseases. World J Hepatol 13(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwanten WJ, Martinet W, Michielsen PP, Francque SM (2014) Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J Gastroenterol: WJG 20(23):7325

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon HY, Kim J-H, Kim B, Srivastava SK, Kim S-H (2018) Regulation of SIRT1/AMPK axis is critically involved in gallotannin-induced senescence and impaired autophagy leading to cell death in hepatocellular carcinoma cells. Arch Toxicol 92(1):241–257

    Article  CAS  PubMed  Google Scholar 

  • Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146(3):726–735

    Article  CAS  PubMed  Google Scholar 

  • Lau AW, Liu P, Inuzuka H, Gao D (2014) SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 4(3):245

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu L, Wang B, Wang J, Chen D (2013) Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomedical Reports 1(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hai J, Li Z, Zhang Y, Peng H, Li K et al (2014) Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem Toxicol 63:166–173

    Article  CAS  PubMed  Google Scholar 

  • Li Y-l, Li X-q, Wang Y-d, Shen C, Zhao C-y (2019) Metformin alleviates inflammatory response in non-alcoholic steatohepatitis by restraining signal transducer and activator of transcription 3-mediated autophagy inhibition in vitro and in vivo. Biochemical and biophysical research communications 513(1):64–72

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Y. (2019) AMPK and autophagy. Autophagy: Biology and Diseases 85–108

  • Li R, Yao Y, Gao P, Bu S. (2021) The therapeutic efficacy of curcumin vs. metformin in modulating the gut microbiota in NAFLD rats: a comparative study. Frontiers in microbiology 11 555293

  • Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL et al (2016) p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21(1):1–14

    Article  CAS  Google Scholar 

  • Mao Y, Yu F, Wang J, Guo C, Fan X (2016) Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepatic Medicine: Evidence and Research 8:27

    Article  PubMed  Google Scholar 

  • Mazza A, Fruci B, Garinis GA, Giuliano S, Malaguarnera R, Belfiore A (2012) The role of metformin in the management of NAFLD. Exp Diabetes Res 2012

  • McCullough AJ (2006) Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol 40:S17–S29

    CAS  PubMed  Google Scholar 

  • Mohammed MRS, Alghamdi RA, Alzahrani AM, Zamzami MA, Choudhry H, Khan MI (2021) Compound C, a broad kinase inhibitor alters metabolic fingerprinting of extra cellular matrix detached cancer cells. Front Oncol 11

  • Moslehi A, Hamidi-Zad Z (2018) Role of SREBPs in liver diseases: a mini-review. J Clin Transl Hepatol 6(3):332

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair S, Diehl A, Wiseman M, Farr G Jr, Perrillo R (2004) Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther 20(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Nassir F (2022) NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 12(6):824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobili V, Marcellini M, Devito R, Ciampalini P, Piemonte F, Comparcola D et al (2006) NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology 44(2):458–465

    Article  PubMed  Google Scholar 

  • Okayasu S, Kitaichi K, Hori A, Suwa T, Horikawa Y, Yamamoto M et al (2012) The evaluation of risk factors associated with adverse drug reactions by metformin in type 2 diabetes mellitus. Biol Pharm Bull 35(6):933–937

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Lee MR, Huang X, Messina-Graham S, Broxmeyer HE (2014) SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32(5):1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Ozturk ZA, Kadayifci A (2014) Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J Hepatol 6(4):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2011) Anti-oxidative action of resveratrol: implications for human health. Arab J Chem 4(3):293–298

    Article  CAS  Google Scholar 

  • Papageorgiou A-A, Goutas A, Trachana V, Tsezou A (2021) Dual role of SIRT1 in autophagy and lipid metabolism regulation in osteoarthritic chondrocytes. Medicina 57(11):1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardo V, González-Rodríguez Á, Muntané J, Kozma SC, Valverde ÁM (2015) Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem Toxicol 80:298–309

    Article  CAS  PubMed  Google Scholar 

  • Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos VdM, Kowaltowski AJ, Kakimoto PA (2021) Autophagy in hepatic steatosis: a structured review. Front Cell Dev Biol 9:657389

  • Ren J, Zhang Y (2018) Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci 39(12):1064–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabir U, Irfan HM, Umer I, Niazi ZR, Asjad HMM. (2022) Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology 1–15

  • Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi-Sahlabadi A, Teymoori F, Mokhtari E, Taghiyar M, Hekmatdoost A, Mirmiran P (2022) Dietary Phytochemical Index and the risk of non-alcoholic fatty liver disease: a case-control study among Iranian adults. Complement Ther Med 71:102881

  • Sarkar S, Ravikumar B, Floto R, Rubinsztein D (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Séité S, Pioche T, Ory N, Plagnes-Juan E, Panserat S, Seiliez I (2019) The autophagic flux inhibitor bafilomycine A1 affects the expression of intermediary metabolism-related genes in trout hepatocytes. Front Physiol 10:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Shacka JJ, Klocke BJ, Roth KA (2006) Autophagy, bafilomycin and cell death: the “aB-cs” of plecomacrolide-induced neuroprotection. Autophagy 2(3):228–230

    Article  CAS  PubMed  Google Scholar 

  • Shang J, Chen L-l, Xiao F-x, Sun H, Ding H-c, Xiao H (2008) Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacologica Sinica 29(6):698–706

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Dou X, Ma Y, Ma W, Li S, Song Z. (2017) Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction. Nutrition Research 40 40-7

  • Slawik M, Vidal-Puig AJ (2006) Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 5(2):144–164

    Article  CAS  PubMed  Google Scholar 

  • Song YM, Lee Y-h, Kim J-W, Ham D-S, Kang E-S, Cha BS et al (2015) Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 11(1):46–59

    Article  CAS  PubMed  Google Scholar 

  • Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochimica Et Biophysica Acta (BBA) Molecular Basis of Disease 1842(12):2535–47

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Zhai R, Ma C, Miao W (2020) Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Med 9(3):1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Tang LY, Chen Y, Rui BB, Hu CM (2016) Resveratrol ameliorates lipid accumulation in HepG2 cells, associated with down-regulation of lipin1 expression. Can J Physiol Pharmacol 94(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Springer, Autophagosome and phagosome, pp 77–88

    Google Scholar 

  • Tilg H (2010) The role of cytokines in non-alcoholic fatty liver disease. Dig Dis 28(1):179–185

    Article  PubMed  Google Scholar 

  • Torres W, Nava M, Galbán N, Gómez Y, Morillo V, Rojas M et al (2020) Anti-aging effect of metformin: a molecular and therapeutical perspective. Curr Pharm Des 26(35):4496–4508

    Article  CAS  PubMed  Google Scholar 

  • Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66(8):445–454

    Article  PubMed  Google Scholar 

  • Van Stee MF, de Graaf AA, Groen AK (2018) Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol 17(1):1–22

    Google Scholar 

  • Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. BioFactors 38(5):349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan D, Zhou Y, Wang K, Hou Y, Hou R, Ye X (2016) Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 121:255–262

    Article  CAS  PubMed  Google Scholar 

  • Wang G-L, Fu Y-C, Xu W-C, Feng Y-Q, Fang S-R, Zhou X-H (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1–FOXO1 signaling pathway. Biochem Biophys Res Commun 380(3):644–649

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang J, Li D, Ke W, Chen F, Hu X (2020) Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. J Nutr Biochem 81:108363

    Article  CAS  PubMed  Google Scholar 

  • Wu WK, Zhang L, Chan MT. (2018) Autophagy, NAFLD and NAFLD-related HCC. Obesity, Fatty Liver and Liver Cancer 127–38

  • Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J et al (2019) Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2 cells via the AMPK/NF-B pathway. Int J Endocrinol 2019

  • Xu H-D, Qin Z-H. (2019) Beclin 1, Bcl-2 and autophagy. Autophagy: Biology and Diseases 109–26

  • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11(6):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R et al (2014) Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146(3):801–811

    Article  CAS  PubMed  Google Scholar 

  • Zare M, Panahi G, Koushki M, Mostafavi-Pour Z, Meshkani R (2022) Metformin reduces lipid accumulation in HepG2 cells via downregulation of miR-33b. Arch Physiol Biochem 128(2):333–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Wang T, Li B, Li H, Wang Z et al (2006) Resveratrol, a natural ingredient of grape skin: antiarrhythmic efficacy and ionic mechanisms. Biochem Biophys Res Commun 340(4):1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ml Chen, Zhou Y, Yi L, Yx Gao, Ran L et al (2015) Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Molecular nutrition & food research 59(8):1443–57

    Article  CAS  Google Scholar 

  • Zhou J, Massey S, Story D, Li L (2018) Metformin: an old drug with new applications. Int J Mol Sci 19(10):2863

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Sinha RA, Yen PM. (2021) The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD. Hepatoma Res 7

  • Zhu X, Yan H, Xia M, Chang X, Xu X, Wang L et al (2018) Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis 17(1):1–9

    Article  Google Scholar 

Download references

Funding

The study was funded by Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Havva Afshari: wrote the manuscript and interpreted the results. Shokoofe Noori: supervised and designed the study and analyzed the data. Afshin Zarghi: contributed to the conduction of the experiments. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Shokoofe Noori.

Ethics declarations

Ethics and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 2 KB)

Supplementary file2 (JPG 3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, H., Noori, S. & Zarghi, A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. Naunyn-Schmiedeberg's Arch Pharmacol 396, 3135–3148 (2023). https://doi.org/10.1007/s00210-023-02520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02520-7

Keywords

Navigation