Skip to main content

Advertisement

Log in

Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion (I/R) injury is a tissue damage during reperfusion after an ischemic condition. I/R injury is induced by pathological cases including stroke, myocardial infarction, circulatory arrest, sickle cell disease, acute kidney injury, trauma, and sleep apnea. It can lead to increased morbidity and mortality in the context of these processes. Mitochondrial dysfunction is one of the hallmarks of I/R insult, which is induced via reactive oxygen species (ROS) production, apoptosis, and autophagy. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play a main regulatory role in gene expression. Recently, there are evidence, which miRNAs are the major modulators of cardiovascular diseases, especially myocardial I/R injury. Cardiovascular miRNAs, specifically miR-21, and probably miR-24 and miR-126 have protective effects on myocardial I/R injury. Trimetazidine (TMZ) is a new class of metabolic agents with an anti-ischemic activity. It has beneficial effects on chronic stable angina by suppressing mitochondrial permeability transition pore (mPTP) opening. The present review study addressed the different mechanistic effects of TMZ on cardiac I/R injury. Online databases including Scopus, PubMed, Web of Science, and Cochrane library were assessed for published studies between 1986 and 2021. TMZ, an antioxidant and metabolic agent, prevents the cardiac reperfusion injury by regulating AMP-activated protein kinase (AMPK), cystathionine-γ-lyase enzyme (CSE)/hydrogen sulfide (H2S), and miR-21. Therefore, TMZ protects the heart against I/R injury by inducing key regulators such as AMPK, CSE/H2S, and miR-21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akbari G, Ali Mard S, Veisi A (2018) A comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs. Biomed Pharmacother 99:664–670

    Article  CAS  PubMed  Google Scholar 

  • Allibardi S et al (1998) Effects of trimetazidine on metabolic and functional recovery of postischemic rat hearts. Cardiovasc Drugs Ther 12(6):543–549

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi T et al (2012) Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 303(1):H75-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argaud L et al (2005a) Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol 39(6):893–899

    Article  CAS  PubMed  Google Scholar 

  • Argaud L et al (2005b) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38(2):367–374

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SC (2004) Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 61(3):427–436

    Article  CAS  PubMed  Google Scholar 

  • Atochin DN et al (2007) The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest 117(7):1961–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aussedat J et al (1993) Improvement of long-term preservation of isolated arrested rat heart: beneficial effect of the antiischemic agent trimetazidine. J Cardiovasc Pharmacol 21(1):128–135

    Article  CAS  PubMed  Google Scholar 

  • Bernardi C et al (2013) Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS ONE 8(10):e76540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besancon E et al (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275

    Article  CAS  PubMed  Google Scholar 

  • Boireau A et al (1999) Effects of ebselen, a glutathione peroxidase mimic, in several models of mitochondrial dysfunction. Ann N Y Acad Sci 893(1):254–257

    Article  CAS  PubMed  Google Scholar 

  • Buja LM (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14(4):170–175

    Article  CAS  PubMed  Google Scholar 

  • Chen ZP et al (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2020) Mitochondrial transfer as a therapeutic strategy against ischemic stroke. Transl Stroke Res 11(6):1214–1228

  • Cheng Y et al (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Zhang R, Wu J, Zhao C, Han Y (2018) Experimental study that trimetazidine inhibits Fas/FasL pathway to relieve the myocardial ischemia reperfusion injury in rats. J Hainan Med Univ 24(15):1–4

    Google Scholar 

  • Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol 16(6):341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94(6):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Cui YX et al (2016) miR-24 suppression of POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) protects endothelial cell from diabetic damage. Biochem Biophys Res Commun 480(4):682–689

    Article  CAS  PubMed  Google Scholar 

  • Dalla-Volta S et al (1990) Comparison of trimetazidine with nifedipine in effort angina: a double-blind, crossover study. Cardiovasc Drugs Ther 4(Suppl 4):853–859

    Article  PubMed  Google Scholar 

  • Dehina L et al (2013) Trimetazidine demonstrated cardioprotective effects through mitochondrial pathway in a model of acute coronary ischemia. Naunyn Schmiedebergs Arch Pharmacol 386(3):205–215

    Article  CAS  PubMed  Google Scholar 

  • Demaison L et al (1995) Trimetazidine: in vitro influence on heart mitochondrial function. Am J Cardiol 76(6):31B-37B

    Article  CAS  PubMed  Google Scholar 

  • Demirelli S et al (2013) The impact of trimetazidine treatment on left ventricular functions and plasma brain natriuretic peptide levels in patients with non-ST segment elevation myocardial infarction undergoing percutaneous coronary intervention. Korean Circ J 43(7):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dews M et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199

    Article  PubMed  Google Scholar 

  • Di Lisa F et al (2011) Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal 14(5):881–891

    Article  PubMed  Google Scholar 

  • Di Napoli P et al (2007) Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide 16(2):228–236

    Article  PubMed  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364

    Article  CAS  PubMed  Google Scholar 

  • Dong J et al (2011) Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res 42(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Donnarumma E et al (2016) Zofenopril protects against myocardial ischemia-reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J Am Heart Assoc 5(7):3531-17

  • Dosenko VE et al (2006) Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? Autophagy 2(4):305–306

    Article  CAS  PubMed  Google Scholar 

  • Drake-Holland AJ et al (1993) Infarct size in rabbits: a modified method illustrated by the effects of propranolol and trimetazidine. Basic Res Cardiol 88(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Duvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183

    Article  PubMed  PubMed Central  Google Scholar 

  • El Banani H et al (1998) Ionic and metabolic imbalance as potential factors of ischemia reperfusion injury. Am J Cardiol 82(5A):25K-29K

    Article  PubMed  Google Scholar 

  • El Banani H et al (2000) Changes in intracellular sodium and pH during ischaemia-reperfusion are attenuated by trimetazidine. Comparison between low- and zero-flow ischaemia. Cardiovasc Res 47(4):688–96

    Article  PubMed  Google Scholar 

  • Faccenda D, Campanella M (2012) Molecular regulation of the mitochondrial F(1)F(o)-ATPsynthase: physiological and pathological significance of the inhibitory factor 1 (IF(1)). Int J Cell Biol 2012:367934

    Article  PubMed  PubMed Central  Google Scholar 

  • Fantini E et al (1994) Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol 26(8):949–958

    Article  CAS  PubMed  Google Scholar 

  • Fantini E et al (1997) Protective effects of trimetazidine on hypoxic cardiac myocytes from the rat. Fundam Clin Pharmacol 11(5):427–439

    Article  CAS  PubMed  Google Scholar 

  • Ferrari R et al (2020) Efficacy and safety of trimetazidine after percutaneous coronary intervention (ATPCI): a randomised, double-blind, placebo-controlled trial. The Lancet 396(10254):830–838

    Article  Google Scholar 

  • Feuerstein G et al (1998) Comparison of metoprolol and carvedilol pharmacology and cardioprotection in rabbit ischemia and reperfusion model. Eur J Pharmacol 351(3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Fontaine E, Paolo B (1999) Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31(4):335–345

    Article  CAS  PubMed  Google Scholar 

  • Fragasso G et al (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146(5):E18

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13(12):780–788

    Article  CAS  PubMed  Google Scholar 

  • Gambert S et al (2006) Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts. Mol Cell Biochem 283(1):147–152

    Article  CAS  PubMed  Google Scholar 

  • Ghahremani R et al (2018) Mitochondrial dynamics as an underlying mechanism involved in aerobic exercise training-induced cardioprotection against Ischemia-Reperfusion injury. Life Sci 213:102–108

    Article  CAS  PubMed  Google Scholar 

  • Giorgi C et al (2012) Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 12(1):77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray CB et al (2017) CaMKIIdelta subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-kappaB and TNF-alpha. J Mol Cell Cardiol 103:48–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri C, Muscari C (1990) Beneficial effect of trimetazidine on ischemic and reperfused hypertrophied rat heart. Journal of Molecular and Cellular 22:65

    Article  Google Scholar 

  • Hadi N, Al-amran F, Al-Turfy M, Abdolrez AJ (2015) The cardioprotective potential of trimetazidine in myocardial ischemia reperfusion injury. Res J Pharm Biol Chem Sci 6(3):1790–1798

    CAS  Google Scholar 

  • Ham O et al (2015) Modulation of Fas-Fas ligand interaction rehabilitates hypoxia-induced apoptosis of mesenchymal stem cells in ischemic myocardium niche. Cell Transplant 24(7):1329–1341

    Article  PubMed  Google Scholar 

  • Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG et al (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • He K et al (2014) ROCK-dependent ATP5D modulation contributes to the protection of notoginsenoside NR1 against ischemia-reperfusion-induced myocardial injury. Am J Physiol Heart Circ Physiol 307(12):H1764–H1776

    Article  CAS  PubMed  Google Scholar 

  • He C et al (2018) Trimetazidine ameliorates myocardial ischemia-reperfusion injury. Pak J Pharm Sci 31(4(Special)):1691–1696

    CAS  PubMed  Google Scholar 

  • Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105(2):151–154

    Article  PubMed  Google Scholar 

  • Hu X et al (2015) Mesenchymal stem cells preconditioned with trimetazidine promote neovascularization of hearts under hypoxia/reoxygenation injury. Int J Clin Exp Med 8(9):16991–17005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Liu W (2015) Identifying an essential role of nuclear LC3 for autophagy. Autophagy 11(5):852–853

  • Huang Z et al (2017) MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Ibanez B et al (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65(14):1454–1471

    Article  PubMed  Google Scholar 

  • Ikizler M et al (2003) Trimetazidine improves recovery during reperfusion in isolated rat hearts after prolonged ischemia. Anadolu Kardiyol Derg 3(4):303–308

    PubMed  Google Scholar 

  • Ikizler M et al (2006) Trimetazidine-induced enhancement of myocardial recovery during reperfusion: a comparative study in diabetic and non-diabetic rat hearts. Arch Med Res 37(6):700–708

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M et al (2004) Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front Biosci 9:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Jang Y et al (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75(2):426–433

    Article  CAS  PubMed  Google Scholar 

  • Javadov S et al (2000) Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45(2):360–369

    Article  CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantor PF et al (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86(5):580–588

    Article  CAS  PubMed  Google Scholar 

  • Kazmi DH et al (2018) Role of metabolic manipulator trimetazidine in limiting percutaneous coronary intervention-induced myocardial injury. Indian Heart J 70(Suppl 3):S365–S371

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan M et al (2006) C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am J Physiol Heart Circ Physiol 290(5):H2136–H2145

    Article  CAS  PubMed  Google Scholar 

  • Khan M et al (2010) Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling. J Pharmacol Exp Ther 333(2):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski J et al (2000) Effect of trimetazidine on biological activity of neutrophils in patients with transient myocardial ischemia induced by exercise testing. Pol Merkur Lekarski 9(50):548–551

    CAS  PubMed  Google Scholar 

  • Kunecki M et al (2017) Effects of endogenous cardioprotective mechanisms on ischemia-reperfusion injury. Postepy Hig Med Dosw (online) 71:20–31

    Article  PubMed  Google Scholar 

  • Kurian GA et al (2016) The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev 2016:1656450

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutala VK et al (2006) Attenuation of myocardial ischemia-reperfusion injury by trimetazidine derivatives functionalized with antioxidant properties. J Pharmacol Exp Ther 317(3):921–928

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293 

  • Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126(8):1713–1719

  • Lee E et al (2014) Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 10(4):572–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Lerman LO (2012) Impaired myocardial autophagy linked to energy metabolism disorders. Autophagy 8(6):992–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Tao Y, Huang Q (2015) Effect and mechanism of miR-126 in myocardial ischemia reperfusion. Genet Mol Res 14(4):18990–18998

    Article  CAS  PubMed  Google Scholar 

  • Li R et al (2017) The effect of trimetazidine treatment in patients with type 2 diabetes undergoing percutaneous coronary intervention for AMI. Am J Emerg Med 35(11):1657–1661

    Article  PubMed  Google Scholar 

  • Liao Y et al (2017) Promoting effects of IL23 on myocardial ischemia and reperfusion are associated with increased expression of IL17A and upregulation of the JAK2STAT3 signaling pathway. Mol Med Rep 16(6):9309–9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Y et al (2016) Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux. Clin Sci (lond) 130(18):1641–1653

    Article  CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2014) A feedback regulatory loop between HIF-1alpha and miR-21 in response to hypoxia in cardiomyocytes. FEBS Lett 588(17):3137–3146

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2016a) Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z et al (2016b) The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Metabolism 65(3):122–130

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Yang ZM, Liu XK (2017) Fas/FasL induces myocardial cell apoptosis in myocardial ischemia-reperfusion rat model. Eur Rev Med Pharmacol Sci 21(12):2913–2918

    PubMed  Google Scholar 

  • Lopaschuk GD et al (2003) Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 93(3):e33–e37

    Article  CAS  PubMed  Google Scholar 

  • Lu C et al (1998) Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol 82(7):898–901

    Article  CAS  PubMed  Google Scholar 

  • Ma N et al (2016) Trimetazidine protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA21 expression, Akt and the Bcl2/Bax pathway. Mol Med Rep 14(5):4216–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malemud ChJ et al (2007) Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways. Curr Opin Pharmacol 7(3):339–343

    Article  CAS  PubMed  Google Scholar 

  • Manchanda SC, Krishnaswami S (1997) Combination treatment with trimetazidine and diltiazem in stable angina pectoris. Heart 78(4):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K et al (2000) Ranolazine attenuates palmitoyl-L-carnitine-induced mechanical and metabolic derangement in the isolated, perfused rat heart. J Pharm Pharmacol 52(6):709–715

    Article  CAS  PubMed  Google Scholar 

  • Marzilli M (2003) Cardioprotective effects of trimetazidine: a review. Curr Med Res Opin 19(7):661–672

    Article  CAS  PubMed  Google Scholar 

  • Marzilli M et al (2019) Trimetazidine in cardiovascular medicine. Int J Cardiol 293:39–44

    Article  PubMed  Google Scholar 

  • Matsui Y et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    Article  CAS  PubMed  Google Scholar 

  • McClellan KJ, Plosker GL (1999) Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs 58(1):143–57

    Article  CAS  PubMed  Google Scholar 

  • Meng G et al (2015) GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res 29(3):203–213

    Article  CAS  PubMed  Google Scholar 

  • Miller BA, Cheung JY (2016) TRPM2 protects against tissue damage following oxidative stress and ischaemia–reperfusion. J Physiol 594(15):4181–4191

    Article  CAS  PubMed  Google Scholar 

  • Miller LE et al (2012) Evaluation of arrhythmia scoring systems and exercise-induced cardioprotection. Med Sci Sports Exerc 44(3):435–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Minamino T (2012) Cardioprotection from ischemia/reperfusion injury–basic and translational research. Circ J 76(5):1074–1082

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Tanno M (2012) The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res 94(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Monteiro P et al (2004) Protective effect of trimetazidine on myocardial mitochondrial function in an ex-vivo model of global myocardial ischemia. Eur J Pharmacol 503(1–3):123–128

  • Monti LD et al (2001) Triglycerides impair postischemic recovery in isolated hearts: roles of endothelin-1 and trimetazidine. Am J Physiol Heart Circ Physiol 281(3):H1122–H1130

    Article  CAS  PubMed  Google Scholar 

  • Morales CR et al (2014) Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal 20(3):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouquet F et al (2010) Effects of trimetazidine, a partial inhibitor of fatty acid oxidation, on ventricular function and survival after myocardial infarction and reperfusion in the rat. Fundam Clin Pharmacol 24(4):469–476

    Article  CAS  PubMed  Google Scholar 

  • Onay-Besikci A, Ozkan SA (2008) Trimetazidine revisited: a comprehensive review of the pharmacological effects and analytical techniques for the determination of trimetazidine. Cardiovasc Ther 26(2):147–165

    Article  CAS  PubMed  Google Scholar 

  • Pantos C et al (2005) Trimetazidine protects isolated rat hearts against ischemia-reperfusion injury in an experimental timing-dependent manner. Basic Res Cardiol 100(2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Parang P, Singh B, Arora R (2005) Metabolic modulators for chronic cardiac ischemia. J Cardiovasc Pharmacol Ther 10(4):217–223

    Article  CAS  PubMed  Google Scholar 

  • Pattingre S et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    Article  CAS  PubMed  Google Scholar 

  • Peart J, Headrick JP (2009) Clinical cardioprotection and the value of conditioning responses. American Journal of Physiology-Heart and Circulatory Physiology 296(6):H1705–H1720

    Article  CAS  PubMed  Google Scholar 

  • Przyklenk K et al (2012) Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 94(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Ramezani-Aliakbari F et al (2019a) The beneficial effects of trimetazidine on reperfusion-induced arrhythmia in diabetic rats. Exp Clin Endocrinol Diabetes 127(5):320–325

    Article  CAS  PubMed  Google Scholar 

  • Ramezani-Aliakbari F et al (2019b) The effects of trimetazidine on QT-interval prolongation and cardiac hypertrophy in diabetic rats. Arq Bras Cardiol 112(2):173–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramezani-Aliakbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A (2020) Trimetazidine increases plasma MicroRNA-24 and MicroRNA-126 levels and improves dyslipidemia, inflammation and hypotension in diabetic rats. Iran J Pharm Res 19(3):248–257

  • Ray P et al (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radical Biol Med 27(1–2):160–169

    Article  CAS  Google Scholar 

  • Riquelme JA et al (2016) Therapeutic targeting of autophagy in myocardial infarction and heart failure. Expert Rev Cardiovasc Ther 14(9):1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Lavanchy N, Martin J (1990) Antiischemic effects of trimetazidine: 31P-NMR spectroscopy study in the isolated rat heart. Cardiovasc Drugs Ther 4(Suppl 4):812–813

    Article  PubMed  Google Scholar 

  • Rouslin W, Broge CW, Grupp IL (1990) ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts. Am J Physiol 259(6 Pt 2):H1759–H1766

    CAS  PubMed  Google Scholar 

  • Russell RR 3rd et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114(4):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryter SW et al (2010) Autophagy in vascular disease. Proc Am Thorac Soc 7(1):40–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai K, Fukushi Y, Abiko Y (1986) Inhibitory effect of trimetazidine on utilization of myocardial glycogen during coronary ligation in dogs. Pharmacology 32(2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Salloum FN et al (2015) Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: Possible involvement of endogenous H2S. Exp Biol Med (Maywood) 240(5):669–681

    Article  CAS  PubMed  Google Scholar 

  • Sandau KB, Faus HG, Brüne B (2000) Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem Biophys Res Commun 278(1):263–267

    Article  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  • Sayed D et al (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285(26):20281–20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seca H et al (2013) Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 14(10):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Sentex E et al (2001) Influence of trimetazidine on the synthesis of complex lipids in the heart and other target organs. Fundam Clin Pharmacol 15(4):255–264

    Article  CAS  PubMed  Google Scholar 

  • Senturk T et al (2014) Effective inhibition of cardiomyocyte apoptosis through the combination of trimetazidine and N-acetylcysteine in a rat model of myocardial ischemia and reperfusion injury. Atherosclerosis 237(2):760–766

    Article  CAS  PubMed  Google Scholar 

  • Shaker SR et al (2020) Trimetazidine improves the outcome of EECP therapy in patients with refractory angina pectoris. Medical Archives 74(3):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Shehata M (2014) Cardioprotective effects of oral trimetazidine in diabetic patients with anterior wall myocardial infarction treated with thrombolysis. Cardiol Res 5(2):58–67

    PubMed  PubMed Central  Google Scholar 

  • Shen J-G, Zhou D-Y (1995) Efficiency of Ginkgo biloba extract (EGb 761) in antioxidant protection against myocardial ischemia and reperfusion injury. Biochem Mol Biol Int 35(1):125–134

    CAS  PubMed  Google Scholar 

  • Shende P et al (2011) Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 123(10):1073–1082

    Article  PubMed  Google Scholar 

  • Shi W et al (2017) Effects of trimetazidine on mitochondrial respiratory function, biosynthesis, and fission/fusion in rats with acute myocardial ischemia. Anatol J Cardiol 18(3):175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sodha NR et al (2008) The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg 33(5):906–913

    Article  PubMed  Google Scholar 

  • Srivastava K, Bath PM, Bayraktutan U (2012) Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 32(3):319–336

    Article  CAS  PubMed  Google Scholar 

  • Suarez Y et al (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 105(37):14082–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui XQ et al (2014) Resveratrol inhibits hydrogen peroxide-induced apoptosis in endothelial cells via the activation of PI3K/Akt by miR-126. J Atheroscler Thromb 21(2):108–118

    Article  CAS  PubMed  Google Scholar 

  • Tan H et al (2018) MicroRNA-24-3p attenuates myocardial ischemia/reperfusion injury by suppressing RIPK1 expression in mice. Cell Physiol Biochem 51(1):46–62

    Article  CAS  PubMed  Google Scholar 

  • Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 65(4):1045–56

    Article  CAS  PubMed  Google Scholar 

  • Tritto I et al (2005) The anti-anginal drug trimetazidine reduces neutrophil-mediated cardiac reperfusion injury. J Cardiovasc Pharmacol 46(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Vedrinne C et al (1996) Effect of trimetazidine on postischemic regional myocardial stunning in the halothane-anesthetized dog. J Cardiovasc Pharmacol 28(4):500–506

    Article  CAS  PubMed  Google Scholar 

  • Veitch K, Maisin L, Hue L (1995) Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion. Am J Cardiol 76(6):25B-30B

    Article  CAS  PubMed  Google Scholar 

  • Vilahur G et al (2011) Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol 50(3):522–533

    Article  CAS  PubMed  Google Scholar 

  • Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 278(6):862–876

    Article  CAS  PubMed  Google Scholar 

  • Wang S et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tang W, Zhu YZ (2017a) An update on AMPK in hydrogen sulfide pharmacology. Front Pharmacol 8:810

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZH et al (2017b) miRNA-21 expression in the serum of elderly patients with acute myocardial infarction. Med Sci Monit 23:5728–5734

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2019) Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene 690:75–80

    Article  CAS  PubMed  Google Scholar 

  • Wang Ch et al (2021) Efficacy of trimetazidine in limiting periprocedural myocardial injury in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Angiology 72(6):511–523

    Article  CAS  PubMed  Google Scholar 

  • Wei Y et al (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss JN et al (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93(4):292–301

    Article  CAS  PubMed  Google Scholar 

  • Williams FM et al (1993) Trimetazidine inhibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits. J Cardiovasc Pharmacol 22(6):828–833

    Article  CAS  PubMed  Google Scholar 

  • Witkowski M et al (2016) Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol 36(6):1263–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2015) Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1alpha/BNIP3 signaling pathway. Mol Med Rep 12(5):6467–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2018) Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J Mol Med (berl) 96(8):791–806

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

  • Xiao X et al (2018) MicroRNA miR-24-3p reduces apoptosis and regulates Keap1-Nrf2 pathway in mouse cardiomyocytes responding to ischemia/reperfusion injury. Oxid Med Cell Longev 2018:7042105

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y et al (2020) Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 127:110148

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhu G, Tian Y (2012) Protective effects of trimetazidine on bone marrow mesenchymal stem cells viability in an ex vivo model of hypoxia and in vivo model of locally myocardial ischemia. J Huazhong Univ Sci Technolog Med Sci 32(1):36–41

    Article  PubMed  Google Scholar 

  • Yang Q, Yang K, Li A (2014) microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep 9(6):2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Yang K, Li AY (2015) Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression. Int J Clin Exp Pathol 8(4):3735–3741

    PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2016a) MicroRNA-24 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. Gene 586(2):268–273

    Article  CAS  PubMed  Google Scholar 

  • Yang Q et al (2016b) Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am J Transl Res 8(2):765–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2018) Arctigenin attenuates ischemia/reperfusion induced ventricular arrhythmias by decreasing oxidative stress in rats. Cell Physiol Biochem 49(2):728–742

    Article  CAS  PubMed  Google Scholar 

  • Yang Q et al (2022) Trimetazidine mitigates high glucose-induced retinal endothelial dysfunction by inhibiting PI3K/Akt/mTOR pathway-mediated autophagy. Bioengineered 13(3):7515–7527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X et al (2015) Effects of glucose concentration on propofol cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts. J Diabetes Res 2015:592028

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz G, Granger DN (2010) Leukocyte recruitment and ischemic brain injury. Neuromolecular Med 12(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Yu P et al (2020) Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am J Transl Res 12(8):4467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng M et al (2013) NF-kappaB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun 436(2):180–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang D et al (2010) MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 120(8):2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2011) Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1alpha accumulation via phosphatidylinositol 3-kinase/Akt pathway. J Pharmacol Exp Ther 338(2):485–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 89:452–465

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Liu C (2019) The cystathionine gamma-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol 22(3):102–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y et al (2017) Trimetazidine protects cardiomyocytes against hypoxia/reoxygenation injury by promoting AMP-activated protein kinase-dependent autophagic flux. J Cardiovasc Pharmacol 69(6):389–397

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2013) Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS ONE 8(1):e54221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and data analysis were performed by MF, FR-A, MR-A, MZ, AK, and SSh. The first draft of the manuscript was written by FR-A and critically revised by AS and IS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Ramezani-Aliakbari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaei, M.H., Ramezani-Aliakbari, F., Ramezani-Aliakbari, M. et al. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1633–1646 (2023). https://doi.org/10.1007/s00210-023-02469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02469-7

Keywords

Navigation