Skip to main content

Advertisement

Log in

Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during the present study are included in this published article.

References

  • Al-Hamamah MA, Alotaibi MR, Ahmad SF, Ansari MA, Attia MSM, Nadeem A, Bakheet SA, As Sobeai HM, Attia SM (2019) Genetic and epigenetic alterations induced by the small-molecule panobinostat: a mechanistic study at the chromosome and gene levels. DNA Repair (Amst) 78:70–80

    Article  CAS  PubMed  Google Scholar 

  • Almansour NM (2022) Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci 9:836417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Thoubaity FK (2020) Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg (lond) 49:44–48

    Article  PubMed  Google Scholar 

  • Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfenati E, Manganaro A, Gini G (2013) VEGA-QSAR: AI inside a platform for predictive toxicology. In: IRCCS IdRFMN (ed) VegaHub, Turin, Italy

  • Boivin GP, Hickman DL, Creamer-Hente MA, Pritchett-Corning KR, Bratcher NA (2017) Review of CO2 as a euthanasia agent for laboratory rats and mice. J Am Assoc Lab Anim Sci 56: 491-499

  • Ching Yung W (1977) Mutagenicity of hydroxamic acids for Salmonella typhimurium. Mutat Res Fundam Mol Mech Mutagen 56:7–12

  • Damaskos C, Garmpi A, Nikolettos K, Vavourakis M, Diamantis E, Patsouras A, Farmaki P, Nonni A, Dimitroulis D, Mantas D, Antoniou EA, Nikolettos N, Kontzoglou K, Garmpis N (2019) Triple-negative breast cancer: the progress of targeted therapies and future tendencies. Anticancer Res 39: 5285-5296

  • Dante RAS, Ferrer RJE, Jacinto SD (2019) Leaf extracts from Dillenia philippinensis Rolfe exhibit cytotoxic activity to both drug-sensitive and multidrug-resistant cancer cells. Asian Pac J Cancer Prev 20:3285–3290

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowling CM, Hollinshead KER, Di Grande A, Pritchard J, Zhang, H, Dillon ET, Haley K, Papadopoulos E, Mehta AK, Bleach R, Lindner AU, Mooney B, Düssmann H, O'Connor D, Prehn JHM, Wynne K, Hemann M, Bradner JE, Kimmelman AC, Guerriero JL, … Chonghaile TN (2021) Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Sci Adv 7(3):eabc4897

  • Food and Drug Administration H (2012) ICH guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use. In: Harmonisation ICo (ed) International Conference on Harmonisation

  • Fragomeni SM, Sciallis A, Jeruss JS (2018) Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin N Am 27:95–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuart Gatnik M, Worth A (2010) Review of software tools for toxicity prediction. EUR 24489 EN. Publications Office of the European Union, Luxembourg. JRC59685

  • Gandhi M, Aweeka F, Greenblatt RM, Blaschke TF (2004) Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol 44:499–523

    Article  CAS  PubMed  Google Scholar 

  • Garmpis N, Damaskos C, Garmpi A, Kalampokas E, Kalampokas T, Spartalis E, Daskalopoulou A, Valsami S, Kontos M, Nonni A, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D (2017) Histone deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises. Cancer Genomics Proteomics 14:299–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gochfeld M (2007) Framework for gender differences in human and animal toxicology. Environ Res 104:4–21

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y (2019) ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10:148–157

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25(3):1315–1360

  • Hsieh YL, Tu HJ, Pan SL, Liou JP, Yang CR (2019) Anti-metastatic activity of MPT0G211, a novel HDAC6 inhibitor, in human breast cancer cells in vitro and in vivo. Biochim Biophys Acta Mol Cell Res 1866:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Hsu KH, Su BH, Tu YS, Lin OA, Tseng YJ (2016) Mutagenicity in a molecule: identification of core structural features of mutagenicity using a scaffold analysis. PLoS ONE 11:e0148900

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang SY, Park S, Kwon Y (2019) Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 199:30–57

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Walmsley R (2013) Histone-deacetylase inhibitors produce positive results in the GADD45a-GFP GreenScreen HC assay. Mutat Res 751:96–100

    Article  CAS  PubMed  Google Scholar 

  • Kerr JS, Galloway S, Lagrutta A, Armstrong M, Miller T, Richon VM, Andrews PA (2010) Nonclinical safety assessment of the histone deacetylase inhibitor vorinostat. Int J Toxicol 29:3–19

    Article  CAS  PubMed  Google Scholar 

  • Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11:e0157368

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenarczyk M, Slowikowska MG (1995) The micronucleus assay using peripheral blood reticulocytes from X-ray-exposed mice. Mutation Research/Environmental Mutagenesis and Related Subjects 335: 229-234

  • Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, Zhang W, Yang J (2018) Histone deacetylase 6 in cancer. J Hematol Oncol 11:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect 6(10):a026831

  • Lipczynska-Kochany E, Iwamura H, Takahashi K, Hakura A, Kawazoe Y (1984) Mutagenicity of pyridine- and quinoline-carbohydroxamic acid derivatives. Mutat Res Genet Toxicol 135:139–148

    Article  CAS  Google Scholar 

  • Maccallini C, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L, Amoroso R (2022) HDAC inhibitors for the therapy of triple negative breast cancer. Pharmaceuticals (Basel, Switzerland) 15(6):667

    Article  CAS  PubMed  Google Scholar 

  • Martin TM, Harten P, Venkatapathy R, Das S, Young DM (2008) A hierarchical clustering methodology for the estimation of toxicity. Toxicol Mech Methods 18:251–266

    Article  CAS  PubMed  Google Scholar 

  • Martin T (2016) Toxicity Estimation Software Tool (TEST). In: Agency EP (ed) Environmental Protection Agency, Washington, DC

  • Maunz A, Gutlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C (2013) lazar: a modular predictive toxicology framework. Front Pharmacol 4:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MA (2001) Gender-based differences in the toxicity of pharmaceuticals–the Food and Drug Administration’s perspective. Int J Toxicol 20:149–152

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Asano N, Awogi T, Sasaki YF, Sei-ichi S, Shimada H, Sutou S, Suzuki T, Akihiro W, Sofuni T, Hayashi M (1997) Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (groups 1, 2A and 2B). Mutat Research/Genetic Toxicology and Environmental Mutagenesis 389:3–122

    Article  Google Scholar 

  • Nations U (2011) Globally harmonized system of classification and labelling of chemicals (GHS). UNITED NATIONS, New York and Geneva, p 568

  • NATIONS U (2013) Globally harmonized system of classification and labelling of chemicals (GHS). UNITED NATIONS, New York

  • Oba T, Ono M, Matoba H, Uehara T, Hasegawa Y, Ito KI (2021) HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells. Breast Cancer Res Treat 186:37–51

    Article  CAS  PubMed  Google Scholar 

  • OECD (2002) Test No. 423: Acute oral toxicity - acute toxic class method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris

  • OECD (2016) Test No. 487: In vitro mammalian cell micronucleus test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris

  • Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT (2006) The histone deacetylase inhibitor trichostatin a has genotoxic effects in human lymphoblasts in vitro. Toxicol Sci 93:341–347

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J (2011) Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep 25:1677–1681

    CAS  PubMed  Google Scholar 

  • Parthasarathi R, Dhawan A (2018) In silico approaches for predictive toxicology. In Vitro Toxicology, pp 91–109

  • Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B (2021) HDAC6 as privileged target in drug discovery: a perspective. Pharmacol Res 163:105274

    Article  CAS  PubMed  Google Scholar 

  • Rahimian A, Mellati A (2017) The effect of histone hyperacetylation on viability of basal-like breast cancer cells MDA-MB-231. Razavi Int J Med. 5(2):1–5

    Article  Google Scholar 

  • Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey M, Irondelle M, Waharte F, Lizarraga F, Chavrier P (2011) HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur J Cell Biol 90:128–135

    Article  CAS  PubMed  Google Scholar 

  • Rim KT (2020) In silico prediction of toxicity and its applications for chemicals at work. Toxicol Environ Health Sci 12(3):191–202

  • Schmid W (1976) The micronucleus test for cytogenetic analysis. In: Hollaender A (eds) Chemical Mutagens. Springer, Boston, pp 31–53

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor Persperct Biol 6(4):a018713

  • Shen S, Kozikowski AP (2016) Why hydroxamates may not be the best histone deacetylase inhibitors–what some may have forgotten or would rather forget? ChemMedChem 11:15–21

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Hamidullah SMK, Tripathi VD, Konwar R, Pandey J (2018) Identification of N-hydroxycinnamamide analogues and their bio-evaluation against breast cancer cell lines. Biomed Pharmacother 107:475–483

    Article  CAS  PubMed  Google Scholar 

  • Sixto-Lopez Y, Bello M, Correa-Basurto J (2019) Structural and energetic basis for the inhibitory selectivity of both catalytic domains of dimeric HDAC6. J Biomol Struct Dyn 37:4701–4720

    Article  CAS  PubMed  Google Scholar 

  • Sixto-Lopez Y, Gomez-Vidal JA, de Pedro N, Bello M, Rosales-Hernandez MC, Correa-Basurto J (2020) Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci Rep 10:10462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J (2022) In silico design of HDAC6 inhibitors with neuroprotective effects. J Biomol Struct Dyn 40(24):14204–14222

    Article  PubMed  Google Scholar 

  • Skipper PL, Tannenbaum SR, Thilly WG, Furth EE, Bishop WW (1980) Mutagenicity of hydroxamic acids and the probable involvement of carbamoylation. Cancer Res 40(12):4704–4708

    CAS  PubMed  Google Scholar 

  • Sommer S, Buraczewska I, Kruszewski M (2020) Micronucleus assay: the state of art, and future directions. Int J Mol Sci 21(4):1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Tang C, Du Y, Liang Q, Cheng Z, Tian J (2019) A selenium-containing selective histone deacetylase 6 inhibitor for targeted in vivo breast tumor imaging and therapy. J Mater Chem B 7:3528–3536

    Article  CAS  Google Scholar 

  • Terranova-Barberio M, Roca MS, Zotti AI, Leone A, Bruzzese F, Vitagliano C, Scogliamiglio G, Russo D, D’Angelo G, Franco R, Budillon A, Di Gennaro E (2016) Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget 7:7715–7731

    Article  PubMed  Google Scholar 

  • Van Cruchten S, Van Den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    Article  PubMed  Google Scholar 

  • Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clinic Cancer Res 7(4):971–976

    CAS  Google Scholar 

  • Wang CY, Lee LH (1977) Mutagenicity and antibacterial activity of hydroxamic acids. Antimicrob Agents Chemother 11:753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu VS, Kanaya N, Lo C, Mortimer J, Chen S (2015) From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? J Steroid Biochem Mol Biol 153:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YSL thanks to CONACYT for Ph. D. scholarship and to SECTEI (Secretaria de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México) for Postdoctoral Fellowship.

Funding

This work was supported by Instituto Politécnico Nacional (SIP), BEIFI, COFAA-IPN with grants CB-254600, CB-241339, Infraestructura: 317214, SEP-CONACYT-ANUIES-ECOS Francia: 296636.

Author information

Authors and Affiliations

Authors

Contributions

JCB was the grant holder. YSL, COP, and MCRH performed the biological experiments. YSL, JAGV, and JCB performed the chemical synthesis of the compound. All the authors have contributed to the analysis of the data. YSL drafted the manuscript. JCB revised the manuscript. All authors read and approved the published version of the manuscript.

Corresponding author

Correspondence to José Correa-Basurto.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sixto-López, Y., Ordaz-Pichardo, C., Gómez-Vidal, J.A. et al. Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1211–1222 (2023). https://doi.org/10.1007/s00210-023-02396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02396-7

Keywords

Navigation