Skip to main content

Advertisement

Log in

HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Improved prognosis for triple-negative breast cancer (TNBC) has plateaued and the development of novel therapeutic strategies is required. This study aimed to explore the anti-tumor effect of combined eribulin and HDAC inhibitor (vorinostat: VOR, pan-HDAC inhibitor and ricolinostat: RICO, selective HDAC6 inhibitor) treatment for TNBC.

Methods

The effect of eribulin in combination with an HDAC inhibitor was tested in three TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157) and their eribulin-resistant derivatives. The expression of acetylated α-tubulin was analyzed by Western blotting for TNBC cells and immunohistochemical analyses for clinical specimens obtained from breast cancer patients who were treated with eribulin.

Results

The simultaneous administration of low concentrations (0.2 μM) of VOR or RICO enhanced the anti-tumor effect of eribulin in MDA-MB-231 and Hs578T cells but not in MDA-MB-157 cells. Meanwhile, pretreatment with 5 μM of VOR or RICO enhanced eribulin sensitivity in all three cell lines. Low concentration of VOR or RICO increased acetylated α-tubulin expression in MDA-MB-231 and Hs578T cells. In contrast, whereas 5 μM of VOR or RICO increased the expression of acetylated α-tubulin in MDA-MB-157 cells, low concentrations did not. Eribulin increased the expression of acetylated α-tubulin in MDA-MB-231 and Hs578T cells but not in MDA-MB-157 cells. These phenomena were also observed in eribulin-resistant cells. Immunohistochemical analyses revealed that the expression of acetylated α-tubulin was increased after eribulin treatment in TNBC.

Conclusions

HDAC6 inhibition enhances the anti-tumor effect of eribulin through the acetylation of α-tubulin. This combination therapy could represent a novel therapeutic strategy for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this work are available from the authors upon reasonable request.

Abbreviations

EMT:

Epithelial–mesenchymal transition

ER:

Estrogen receptor

FEC:

5FU, epirubicin and cyclophosphamide

HDAC:

Histone deacetylase

MET:

Mesenchymal–epithelial transition

PR:

Partial response

RICO:

Ricolinostat

siRNA:

Small interfering RNA

TME:

Tumor microenvironment

TNBC:

Triple-negative breast cancer

VOR:

Vorinostat

References

  1. Bonotto M, Gerratana L, Poletto E, Driol P, Giangreco M, Russo S, Minisini AM, Andreetta C, Mansutti M, Pisa FE, Fasola G, Puglisi F (2014) Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist 19:608–615. https://doi.org/10.1634/theoncologist.2014-0002

    Article  PubMed  PubMed Central  Google Scholar 

  2. den Brok WD, Speers CH, Gondara L, Baxter E, Tyldesley SK, Lohrisch CA (2017) Survival with metastatic breast cancer based on initial presentation, de novo versus relapsed. Breast Cancer Res Treat 161:549–556. https://doi.org/10.1007/s10549-016-4080-9

    Article  Google Scholar 

  3. Montagna E, Maisonneuve P, Rotmensz N, Cancello G, Iorfida M, Balduzzi A, Galimberti V, Veronesi P, Luini A, Pruneri G, Bottiglieri L, Mastropasqua MG, Goldhirsch A, Viale G, Colleoni M (2013) Heterogeneity of triple-negative breast cancer: histologic subtyping to inform the outcome. Clin Breast Cancer 13:31–39. https://doi.org/10.1016/j.clbc.2012.09.002

    Article  PubMed  Google Scholar 

  4. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279. https://doi.org/10.1371/journal.pmed.1000279

    Article  PubMed  PubMed Central  Google Scholar 

  5. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948. https://doi.org/10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  6. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352. https://doi.org/10.1038/nature10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield BA, Wilson L (2005) The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 4:1086–1095. https://doi.org/10.1158/1535-7163.Mct-04-0345

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Towle MJ, Cheng H, Saxton P, Reardon C, Wu J, Murphy EA, Kuznetsov G, Johannes CW, Tremblay MR, Zhao H, Pesant M, Fang FG, Vermeulen MW, Gallagher BM Jr, Littlefield BA (2007) In vitro and in vivo anticancer activities of synthetic (-)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res 27:1509–1518

    CAS  PubMed  Google Scholar 

  9. Tsuji T, Ibaragi S, Hu GF (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139. https://doi.org/10.1158/0008-5472.Can-09-1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, Uesugi M, Agoulnik S, Taylor N, Funahashi Y, Matsui J (2014) Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer 110:1497–1505. https://doi.org/10.1038/bjc.2014.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (2013) TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123:1348–1358. https://doi.org/10.1172/jci65416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, Kikkawa F (2007) Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 31:277–283

    CAS  PubMed  Google Scholar 

  13. Oba T, Ito KI (2018) Combination of two anti-tubulin agents, eribulin and paclitaxel, enhances anti-tumor effects on triple-negative breast cancer through mesenchymal-epithelial transition. Oncotarget 9(33):22986–23002. https://doi.org/10.18632/oncotarget.25184

    Article  PubMed  PubMed Central  Google Scholar 

  14. Funahashi Y, Okamoto K, Adachi Y, Semba T, Uesugi M, Ozawa Y, Tohyama O, Uehara T, Kimura T, Watanabe H, Asano M, Kawano S, Tizon X, McCracken PJ, Matsui J, Aoshima K, Nomoto K, Oda Y (2014) Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Sci 105:1334–1342. https://doi.org/10.1111/cas.12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goto W, Kashiwagi S, Asano Y, Takada K, Morisaki T, Fujita H, Takashima T, Ohsawa M, Hirakawa K, Ohira M (2018) Eribulin Promotes Antitumor Immune Responses in Patients with Locally Advanced or Metastatic Breast Cancer. Anticancer Res. 38:2929–2938. https://doi.org/10.21873/anticanres.12541

    Article  CAS  PubMed  Google Scholar 

  16. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  17. Asthana J, Kapoor S, Mohan R, Panda D (2013) Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J Biol Chem 288:22516–22526. https://doi.org/10.1074/jbc.M113.489328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song Y, Brady ST (2015) Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 25:125–136. https://doi.org/10.1016/j.tcb.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458. https://doi.org/10.1038/417455a

    Article  CAS  PubMed  Google Scholar 

  20. Mehnert JM, Kelly WK (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J 13:23–29. https://doi.org/10.1097/PPO.0b013e31803c72ba

    Article  CAS  PubMed  Google Scholar 

  21. Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210. https://doi.org/10.1016/j.canlet.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  22. Duvic M, Olsen EA, Breneman D, Pacheco TR, Parker S, Vonderheid EC, Abuav R, Ricker JL, Rizvi S, Chen C, Boileau K, Gunchenko A, Sanz-Rodriguez C, Geskin LJ (2009) Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma 9:412–416. https://doi.org/10.3816/CLM.2009.n.082

    Article  PubMed  Google Scholar 

  23. Cosenza M, Civallero M, Marcheselli L, Sacchi S, Pozzi S (2017) Ricolinostat, a selective HDAC6 inhibitor, shows anti-lymphoma cell activity alone and in combination with bendamustine. Apoptosis 22:827–840. https://doi.org/10.1007/s10495-017-1364-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogl DT, Raje N, Jagannath S, Richardson P, Hari P, Orlowski R, Supko JG, Tamang D, Yang M, Jones SS, Wheeler C, Markelewicz RJ, Lonial S (2017) Ricolinostat, the First Selective Histone Deacetylase 6 Inhibitor, in Combination with Bortezomib and Dexamethasone for Relapsed or Refractory Multiple Myeloma. Clin Cancer Res 23:3307–3315. https://doi.org/10.1158/1078-0432.ccr-16-2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng U, Wang Z, Pei S, Ou Y, Hu P, Liu W, Song J (2017) ACY-1215 accelerates vemurafenib induced cell death of BRAF-mutant melanoma cells via induction of ER stress and inhibition of ERK activation. Oncol Rep 37:1270–1276. https://doi.org/10.3892/or.2016.5340

    Article  CAS  PubMed  Google Scholar 

  26. Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G (2007) Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr Relat Cancer 14:839–845. https://doi.org/10.1677/erc-07-0096

    Article  CAS  PubMed  Google Scholar 

  27. Owonikoko TK, Ramalingam SS, Kanterewicz B, Balius TE, Belani CP, Hershberger PA (2010) Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer 126:743–755. https://doi.org/10.1002/ijc.24759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dowdy SC, Jiang S, Zhou XC, Hou X, Jin F, Podratz KC, Jiang SW (2006) Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther 5:2767–2776. https://doi.org/10.1158/1535-7163.Mct-06-0209

    Article  CAS  PubMed  Google Scholar 

  29. Zuco V, De Cesare M, Cincinelli R, Nannei R, Pisano C, Zaffaroni N, Zunino F (2011) Synergistic antitumor effects of novel HDAC inhibitors and paclitaxel in vitro and in vivo. PLoS ONE 6:e29085. https://doi.org/10.1371/journal.pone.0029085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ono H, Sowa Y, Horinaka M, Iizumi Y, Watanabe M, Morita M, Nishimoto E, Taguchi T, Sakai T (2018) The histone deacetylase inhibitor OBP-801 and eribulin synergistically inhibit the growth of triple-negative breast cancer cells with the suppression of survivin, Bcl-xL, and the MAPK pathway. Breast Cancer Res Treat 171:43–52. https://doi.org/10.1007/s10549-018-4815-x

    Article  CAS  PubMed  Google Scholar 

  31. Oba T, Izumi H, Ito KI (2016) ABCB1 and ABCC11 confer resistance to eribulin in breast cancer cell lines. Oncotarget 7(43):70011–70027. https://doi.org/10.18632/oncotarget.11727

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kano Y, Ohnuma T, Okano T, Holland JF (1988) Effects of vincristine in combination with methotrexate and other antitumor agents in human acute lymphoblastic leukemia cells in culture. Cancer Res 48:351–356

    CAS  PubMed  Google Scholar 

  33. Fujita T, Ito K, Izumi H, Kimura M, Sano M, Nakagomi H, Maeno K, Hama Y, Shingu K, Tsuchiya S, Kohno K, Fujimori M (2005) Increased nuclear localization of transcription factor Y-box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res 11:8837–8844. https://doi.org/10.1158/1078-0432.ccr-05-0945

    Article  CAS  PubMed  Google Scholar 

  34. Putcha P, Yu J, Rodriguez-Barrueco R, Saucedo-Cuevas L, Villagrasa P, Murga-Penas E, Quayle SN, Yang M, Castro V, Llobet-Navas D, Birnbaum D, Finetti P, Woodward WA, Bertucci F, Alpaugh ML, Califano A, Silva J (2015) HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers. Breast Cancer Res 17:149. https://doi.org/10.1186/s13058-015-0658-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947. https://doi.org/10.1038/nrm1260

    Article  CAS  PubMed  Google Scholar 

  36. Torres-Adorno AM, Lee J, Kogawa T, Ordentlich P, Tripathy D, Lim B, Ueno NT (2017) Histone Deacetylase Inhibitor Enhances the Efficacy of MEK Inhibitor through NOXA-Mediated MCL1 Degradation in Triple-Negative and Inflammatory Breast Cancer. Clin Cancer Res 23:4780–4792. https://doi.org/10.1158/1078-0432.Ccr-16-2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang P, Almeciga-Pinto I, Jarpe M, van Duzer JH, Mazitschek R, Yang M, Jones SS, Quayle SN (2017) Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 8(2):2694–2707. https://doi.org/10.18632/oncotarget.13738

    Article  PubMed  Google Scholar 

  38. Azuma K, Urano T, Horie-Inoue K, Hayashi S, Sakai R, Ouchi Y, Inoue S (2009) Association of estrogen receptor alpha and histone deacetylase 6 causes rapid deacetylation of tubulin in breast cancer cells. Cancer Res 69:2935–2940. https://doi.org/10.1158/0008-5472.Can-08-3458

    Article  CAS  PubMed  Google Scholar 

  39. Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, Tuttle KC, Slovic J, Lu Y, Mills GB, Martin SS (2015) alpha-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 75:203–215. https://doi.org/10.1158/0008-5472.Can-13-3563

    Article  CAS  PubMed  Google Scholar 

  40. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A 103:10166–10173. https://doi.org/10.1073/pnas.0603704103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jain S, Vahdat LT (2011) Eribulin mesylate. Clin Cancer Res 17:6615–6622. https://doi.org/10.1158/1078-0432.Ccr-11-1807

    Article  CAS  PubMed  Google Scholar 

  42. Klein I, Sarkadi B, Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461:237–262

    Article  CAS  PubMed  Google Scholar 

  43. Fan YF, Zhang W, Zeng L, Lei ZN, Cai CY, Gupta P, Yang DH, Cui Q, Qin ZD, Chen ZS, Trombetta LD (2018) Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett 421:186–198. https://doi.org/10.1016/j.canlet.2018.01.021

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Kumar P, Anreddy N, Zhang YK, Wang YJ, Chen Y, Talele TT, Gupta K, Trombetta LD, Chen ZS (2017) Quizartinib (AC220) reverses ABCG2-mediated multidrug resistance: In vitro and in vivo studies. Oncotarget 8(55):93785–93799. https://doi.org/10.18632/oncotarget.21078

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nickerson NN, Jao CC, Xu Y, Quinn J, Skippington E, Alexander MK, Miu A, Skelton N, Hankins JV, Lopez MS, Koth CM, Rutherford S, Nishiyama M (2018) A Novel Inhibitor of the LolCDE ABC Transporter Essential for Lipoprotein Trafficking in Gram-Negative Bacteria. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.02151-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by Grants-in-aid for Scientific Research (#17K10541) from the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

TO and KI contributed to the conception and design of the experiments, data analysis, and interpretation and drafted the manuscript. TO, MO, and YH performed the experiments and contributed to the acquisition of data. MH and TU evaluated the IHC staining of acetylated α-tubulin. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ken-ichi Ito.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Medical Ethics Committee on Clinical Investigation of Shinshu University (No. 3819). All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Written informed consent was obtained from all patients.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 196 KB)

Supplementary file2 (docx 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oba, T., Ono, M., Matoba, H. et al. HDAC6 inhibition enhances the anti-tumor effect of eribulin through tubulin acetylation in triple-negative breast cancer cells. Breast Cancer Res Treat 186, 37–51 (2021). https://doi.org/10.1007/s10549-020-06033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-06033-2

Keywords

Navigation