Skip to main content

Advertisement

Log in

Blockade of TGF-βR improves the efficacy of doxorubicin by modulating the tumor cell motility and affecting the immune cells in a melanoma model

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

This article has been updated

Abstract

TGF-β contributes to drug resistance and the invasiveness of tumor cells and weakens the anti-tumor immune responses. The present study aimed at examining the efficacy of the combination of SB431542, as a specific inhibitor of TGF-βR, and doxorubicin in controlling the melanoma tumor in mice. The impact of the combination of the doxorubicin and SB431542 on the cell growth, apoptosis, migration, and invasiveness of B16-F10 cells was examined. Besides, the B16-F10 tumor was induced in C57BL/6 mice, and the effects of the mentioned treatment on the tumor volume, survival, and the exhaustion state of T cells were evaluated. Although the combination of doxorubicin and SB431542 did not exhibit synergism in the inhibition of cell growth and apoptosis induction, it efficiently prohibited the migration and the epithelial to mesenchymal transition of B16-F10 cells, and the combination of doxorubicin and SB431542 caused an increase in mRNA levels of E-cadherin and, on the other hand, led to a decline in the expression of Vimentin. Tumor volume and the survival of tumor-bearing mice were efficiently controlled by the combination therapy. This treatment also eventuated in a decrease in the percentage of PD-L1+, TCD4+, and TCD8+ cells as indicators of exhausted T cells within the spleens of tumor-bearing mice. Blockade of TGF-βR also propelled the RAW 264.7 cells towards an anti-tumor M1 macrophage phenotype. The inhibition of TGF-βR demonstrated a potential to increase the efficacy of doxorubicin chemotherapy by the means of affecting cellular motility and restoring the anti-tumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are provided as supplementary files.

Change history

  • 19 September 2021

    The affiliation 4 contained mistake where two “s” have been missed in “System” and “Poisoning” words. This has been updated and correctly captured as "Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran".

Abbreviations

TGF-β:

Transforming growth factor-β

EMT:

Epithelial to mesenchymal transition

Tregs:

Regulatory T cells

APCs:

Antigen-presenting cells

TGF-βR:

Receptor of TGF-β

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

MDSCs:

Myeloid-derived suppressor cells

ALK-5:

Activin receptor-like kinase-5

References

  • Blank CU, Haining WN, Held W et al (2019) Defining ‘T cell exhaustion.’ Nat Rev Immunol 19:665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18:128–134

    Article  CAS  PubMed  Google Scholar 

  • Chen N-T, Wu C-Y, Chung C-Y et al (2012) Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM). PLoS One 7:e44947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christowitz C, Davis T, Isaacs A et al (2019) Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 19:757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demir EA, Demir S, Aliyazicioglu Y (2020) In vitro cytotoxic effect of ethanol and dimethyl sulfoxide on various human cell lines. KSU J Agric Nat 23:1119–1124

    Google Scholar 

  • Diskin B, Adam S, Cassini MF et al (2020) PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol 21:442–454

    Article  CAS  PubMed  Google Scholar 

  • Domingues B, Lopes JM, Soares P, Pópulo H (2018) Melanoma treatment in review. Immunotargets Ther 7:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang R, Zhang G, Guo Q et al (2013) Nodal promotes aggressive phenotype via snail-mediated epithelial–mesenchymal transition in murine melanoma. Cancer Lett 333:66–75

    Article  CAS  PubMed  Google Scholar 

  • Franco F, Jaccard A, Romero P et al (2020) Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab 2:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Furukawa F (2019) The Nobel Prize in Physiology or Medicine 2018 was awarded to cancer therapy by inhibition of negative immune regulation. Trends Immunother 2:1–2

    Article  Google Scholar 

  • Fuxe J, Karlsson MCI (2012) TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 22:455–461

    Article  CAS  PubMed  Google Scholar 

  • Gass J, Donald M (1985) Comparison of uveal melanoma growth rates with mitotic index and mortality. Arch Ophthalmol 103:924–931

    Article  CAS  PubMed  Google Scholar 

  • Gibbons Johnson RM, Dong H (2017) Functional expression of programmed death-ligand 1 (B7–H1) by immune cells and tumor cells. Front Immunol 8:961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8:2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar K, Birtwistle L, Micklethwaite K (2018) Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm Genome 29:739–756

    Article  CAS  PubMed  Google Scholar 

  • Hargadon KM, Johnson CE, Williams CJ (2018) Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 62:29–39

    Article  CAS  PubMed  Google Scholar 

  • Heldin C-H, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGF$β$ in cancer. FEBS Lett 586:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Ianevski A, Giri AK, Aittokallio T (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48:W488–W493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Pardoux C, Hall MC et al (2007) TGF-$β$ activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26:3957–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Choi H, Cho H-R et al (2021) Downregulation of NKG2DLs by TGF-$β$ in human lung cancer cells. BMC Immunol 22:1–13

    Article  CAS  Google Scholar 

  • Leonardi GC, Falzone L, Salemi R et al (2018) Cutaneous melanoma: from pathogenesis to therapy. Int J Oncol 52:1071–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Li S, Li MO (2018) TGF-$β$ Control of adaptive immune tolerance: a break from Treg cells. BioEssays 40:1800063

    Article  CAS  Google Scholar 

  • Liu Y, Liang S, Jiang D et al (2021) Manipulation of TAMs functions to facilitate the immune therapy effects of immune checkpoint antibodies. J Control Release 336:621–634

    Article  CAS  PubMed  Google Scholar 

  • Mardomi A, Sabzichi M, Somi MH et al (2016) Trafficking mechanism of bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma HepG2 cells by modulating Endoglin, CXCR4 and TGF-β. Cell Mol Biol (Noisy Le Gd Fr) 62:81–86

    CAS  Google Scholar 

  • Mellor HR, Callaghan R (2008) Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81:275–300

    Article  CAS  PubMed  Google Scholar 

  • Mhaidly R, Mechta-Grigoriou F (2020) Fibroblast heterogeneity in tumor micro-environment: role in immunosuppression and new therapies. Semin Immunol 48:101417

  • Mokhtari RB, Homayouni TS, Baluch N et al (2017) Combination Therapy in Combating Cancer Oncotarget 8:38022

    Google Scholar 

  • Moo-Young TA, Larson JW, Belt BA et al (2009) Tumor derived TGF-Beta mediates conversion of CD4+ Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother (Hagerstown, Md 1997) 32:12–21

    CAS  Google Scholar 

  • O’Neill RE, Cao X (2019) Co-stimulatory and co-inhibitory pathways in cancer immunotherapy. Adv Cancer Res 143:145–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan J-X, Chen G, Li J-J et al (2018) Isocorydine suppresses doxorubicin-induced epithelial-mesenchymal transition via inhibition of ERK signaling pathways in hepatocellular carcinoma. Am J Cancer Res 8:154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6:e0004

    Article  PubMed  PubMed Central  Google Scholar 

  • Premkumar K, Shankar BS (2020) TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. Cancer Immunol Immunother 70:153–168

    Article  PubMed  CAS  Google Scholar 

  • Raghavan R, Cheriyamundath S, Madassery J (2015) Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays. Indian J Pharmacol 47:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Reis ST, Pontes-Júnior J, Antunes AA et al (2011) Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clinics 66:1143–1147

    PubMed  PubMed Central  Google Scholar 

  • Renu K, Abilash VG, TirupathiPichiah PB, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy–an update. Eur J Pharmacol 818:241–253

    Article  CAS  PubMed  Google Scholar 

  • Salmaninejad A, Valilou SF, Shabgah AG et al (2019) PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 234:16824–16837

    Article  CAS  PubMed  Google Scholar 

  • Sheng W, Liu Y, Chakraborty D et al (2021) Simultaneous inhibition of LSD1 and TGF-B enables eradication of poorly immunogenic tumors with anti-PD-1 treatment. Cancer Discov 11:1970–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Moon M, Dawood S et al (2011) Mechanisms and management of doxorubicin cardiotoxicity. Herz 36:296–305

    Article  CAS  PubMed  Google Scholar 

  • Stone EL, Lim YW, Coles GL et al (2021) Single cell transcriptomics reveals the effect of PD-L1 and TGF-B blockade on the tumor microenvironment. Cancer Res 81:2684

  • Sun Y (2016) Tumor microenvironment and cancer therapy resistance. Cancer Lett 380:205–215

    Article  CAS  PubMed  Google Scholar 

  • Taefehshokr N, Baradaran B, Baghbanzadeh A, Taefehshokr S (2020) Promising approaches in cancer immunotherapy. Immunobiology 225:151875

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Umemura M, Narikawa M et al (2020) Reactive fibrosis precedes doxorubicin-induced heart failure through sterile inflammation. ESC Hear Fail 7:588–603

    Article  Google Scholar 

  • Tauriello DVF, Batlle E (2018) TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. ESMO Open 3:A4. https://doi.org/10.1136/esmoopen-2018-EACR25.8

    Article  Google Scholar 

  • Tunçer S, Gurbanov R, Sheraj I et al (2018) Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  • Twomey JD, Zhang B (2021) Cancer immunotherapy update: FDA-Approved checkpoint inhibitors and companion diagnostics. AAPS J 23:1–11

    Article  Google Scholar 

  • Wang D, DuBois RN (2015) Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 36:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li D, Cang H, Guo B (2019) Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med 8:4709–4721

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ma Y, Fang Y et al (2012) Regulatory T cell: a protection for tumour cells. J Cell Mol Med 16:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu A, Liu Y, Chen W et al (2016) TGF-$β$–induced regulatory T cells directly suppress B cell responses through a noncytotoxic mechanism. J Immunol 196:3631–3641

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta (BBA)-Reviews Cancer 1845:84–89

    Article  CAS  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-$β$ and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang H, Wang X et al (2016) TGF-$β$ induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7:52294

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chang X, Wang H et al (2019) TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. Environ Toxicol 35:419–429

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Chen K et al (2021) Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 21:1–17

    CAS  Google Scholar 

  • Zhou H, Liu M, Deng T et al (2019) The TGF-$β$/Smad pathway inhibitor SB431542 enhances the antitumor effect of radiofrequency ablation on bladder cancer cells. Onco Targets Ther 12:7809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding information is available for this study.

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualization and practical experiments; MG and MK: data analysis and manuscript drafting; MP, MS, and MPK: collaboration in cell culture and animal model studies; AS: study design, management, and critical revision of the manuscript. All data were generated in-house and no paper mill was used.

Corresponding author

Correspondence to Ali Salimi.

Ethics declarations

Ethics approval

This study was conducted under ethical approvals from the local ethics committee (registration code: IR. BMSU.REC.1399.98000536) and in accordance with the NIH Guide to Laboratory Animal Care.

Consent to participate

All authors agree to participate in this study.

Consent for publication

All authors agree to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardomi, A., Ghollasi, M., Korani, M. et al. Blockade of TGF-βR improves the efficacy of doxorubicin by modulating the tumor cell motility and affecting the immune cells in a melanoma model. Naunyn-Schmiedeberg's Arch Pharmacol 394, 2309–2322 (2021). https://doi.org/10.1007/s00210-021-02134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02134-x

Keywords

Navigation