Artlett CM (2012) The role of the NLRP3 inflammasome in fibrosis. Open Rheumatol J 6(1). https://doi.org/10.2174/1874312901206010080
Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57(4):376–379. https://doi.org/10.1097/FJC.0b013e3182116e39
CAS
Article
PubMed
PubMed Central
Google Scholar
Böhm SK, Kruis W (2014) Long-term efficacy and safety of once-daily mesalazine granules for the treatment of active ulcerative colitis. Clin Exp Gastroenterol 7:369–383. https://doi.org/10.2147/CEG.S35691
Article
PubMed
PubMed Central
Google Scholar
Carmine Stolfi RP, Francesco Pallone GM (2008) Molecular basis of the potential of mesalazine to prevent colorectal cancer. World J Gastroenterol 14(28):4434–4439. https://doi.org/10.3748/wjg.14.4434
CAS
Article
PubMed
PubMed Central
Google Scholar
Chávez E, Castro-Sánchez L, Shibayama M, Tsutsumi V, Moreno M, Muriel P (2012) Sulfasalazine prevents the increase in TGF-β, COX-2, nuclear NFκB translocation and fibrosis in CCl4-induced liver cirrhosis in the rat. Hum Exp Toxicol 31(9):913–920. https://doi.org/10.1177/0960327112438928
Article
PubMed
Google Scholar
Cheng M, Wu G, Song Y, Wang L, Tu L, Zhang L, Zhang C (2016) Celastrol-induced suppression of the MiR-21/ERK signalling pathway attenuates cardiac fibrosis and dysfunction. CPB 38(5):1928–1938. https://doi.org/10.1159/000445554
CAS
Article
Google Scholar
Clemett D, Markham A (2000) Prolonged-release mesalazine: a review of its therapeutic potential in ulcerative colitis and Crohn’s disease. Drugs 59(4):929–956. https://doi.org/10.2165/00003495-200059040-00016
CAS
Article
PubMed
Google Scholar
Desreumaux P, Ghosh S (2006) Review article: mode of action and delivery of 5-aminosalicylic acid – new evidence. Aliment Pharmacol Ther 24(s1):2–9. https://doi.org/10.1111/j.1365-2036.2006.03069.x
CAS
Article
PubMed
Google Scholar
Dong J, Ma Q (2019) In vivo activation and pro-fibrotic function of NF-κB in fibroblastic cells during pulmonary inflammation and fibrosis induced by carbon nanotubes. Front Pharmacol 10:10. https://doi.org/10.3389/fphar.2019.01140
CAS
Article
Google Scholar
El-Armouche A, Wittköpper K, Degenhardt F, Weinberger F, Didié M, Melnychenko I, Grimm M, Peeck M, Zimmermann WH, Unsöld B, Hasenfuss G, Dobrev D, Eschenhagen T (2008) Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy. Cardiovasc Res 80(3):396–406. https://doi.org/10.1093/cvr/cvn208
CAS
Article
PubMed
Google Scholar
Emig R, Zgierski-Johnston CM, Beyersdorf F, Rylski B, Ravens U, Weber W, Kohl P, Hörner M, Peyronnet R (2019) Human atrial fibroblast adaptation to heterogeneities in substrate stiffness. Front Physiol 10:1526. https://doi.org/10.3389/fphys.2019.01526
Article
PubMed
Google Scholar
Evans RA, Tian YC, Steadman R, Phillips AO (2003) TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res 282(2):90–100. https://doi.org/10.1016/s0014-4827(02)00015-0
CAS
Article
PubMed
Google Scholar
Fan Z, Guan J (2016) Antifibrotic therapies to control cardiac fibrosis. Biomater Res 20:13. https://doi.org/10.1186/s40824-016-0060-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Fang L, Murphy AJ, Dart AM (2017) A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front Pharmacol 8. https://doi.org/10.3389/fphar.2017.00186
Guz N, Dokukin M, Kalaparthi V, Sokolov I (2014) If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 107(3):564–575. https://doi.org/10.1016/j.bpj.2014.06.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Hertz H (1882) Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92:156–171
Google Scholar
Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82. https://doi.org/10.1016/j.addr.2019.05.011
CAS
Article
PubMed
Google Scholar
Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741
CAS
Article
PubMed
PubMed Central
Google Scholar
Hinz B, McCulloch CA, Coelho NM (2019) Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 379(1):119–128. https://doi.org/10.1016/j.yexcr.2019.03.027
CAS
Article
PubMed
Google Scholar
Huang ES, Strate LL, Ho WW, Lee SS, Chan AT (2011) Long-term use of aspirin and the risk of gastrointestinal bleeding. Am J Med 124(5):426–433. https://doi.org/10.1016/j.amjmed.2010.12.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Jalife J, Kaur K (2015) Atrial remodeling, fibrosis, and atrial fibrillation. Trend Cardiovasc Med 25(6):475–484. https://doi.org/10.1016/j.tcm.2014.12.015
CAS
Article
Google Scholar
Jia G, Aroor AR, Hill MA, Sowers JR (2018) Role of RAAS activation in promoting cardiovascular fibrosis and stiffness. Hypertension 72(3):537–548. https://doi.org/10.1161/HYPERTENSIONAHA.118.11065
CAS
Article
PubMed
Google Scholar
Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee S-J, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127(10):3770–3783. https://doi.org/10.1172/JCI94753
Article
PubMed
PubMed Central
Google Scholar
Klotz U (2012) The pharmacological profile and clinical use of mesalazine (5-aminosalicylic acid). Arzneimittelforschung 62(2):53–58. https://doi.org/10.1055/s-0031-1299685
CAS
Article
PubMed
Google Scholar
Künzel SR, Rausch JSE, Schäffer C, Hoffmann M, Künzel K, Klapproth E, Kant T, Herzog N, Küpper J, Lorenz K, Dudek S, Emig R, Ravens U, Rog-Zielinska EA, Peyronnet R, El-Armouche A (2020) Modeling atrial fibrosis in vitro—generation and characterization of a novel human atrial fibroblast cell line. FEBS Open Bio 10(7):1210–1218. https://doi.org/10.1002/2211-5463.12896
CAS
Article
PubMed
PubMed Central
Google Scholar
Künzel SR, Schaeffer C, Sekeres K, Mehnert CS, Schacht Wall SM, Newe M, Kämmerer S, El-Armouche A (2019) Ultrasonic-augmented Primary adult fibroblast isolation. J Vis Exp 149. https://doi.org/10.3791/59858
Li X, Wang G, QiLi M, Liang H, Li T, E X, Feng Y, Zhang Y, Liu X, Qian M, Xu B, Shen Z, Gitau SC, Zhao D, Shan H (2018) Aspirin reduces cardiac interstitial fibrosis by inhibiting Erk1/2-serpine2 and P-Akt signalling pathways. CPB 45(5):1955–1965. https://doi.org/10.1159/000487972
CAS
Article
Google Scholar
Liu P-P, Liu H-H, Sun S-H, Shi X-X, Yang W-C, Su G-H, Zhao J (2017) Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 38(4):488–497. https://doi.org/10.1038/aps.2016.143
CAS
Article
PubMed
PubMed Central
Google Scholar
Luedde T, Schwabe RF (2011) NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118. https://doi.org/10.1038/nrgastro.2010.213
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo S, Hieu TB, Ma F, Yu Y, Cao Z, Wang M, Wu W, Mao Y, Rose P, Law BY-K, Zhu YZ (2017) ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation. Sci Rep 7(1):43242. https://doi.org/10.1038/srep43242
Article
PubMed
PubMed Central
Google Scholar
McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE (2018) CellProfiler 3.0: next-generation image processing for biology. PLoS Biol 16(7):e2005970. https://doi.org/10.1371/journal.pbio.2005970
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng X, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48
CAS
Article
PubMed
Google Scholar
Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ (2017) The processes and mechanisms of cardiac and pulmonary fibrosis. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00777
Park S, Nguyen NB, Pezhouman A, Ardehali R (2019) Cardiac fibrosis: potential therapeutic targets. Transl Res 209:121–137. https://doi.org/10.1016/j.trsl.2019.03.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078
CAS
Article
PubMed
Google Scholar
Poulet C, Künzel, Stephan, Büttner E, Lindner D, Westermann D, Ravens U (2016) Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Phys Rep 4(2). https://doi.org/10.14814/phy2.12681
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58. https://doi.org/10.1038/nrd.2018.168
CAS
Article
PubMed
Google Scholar
Ramadan A, Afifi N, Yassin NZ, Abdel-Rahman RF, Abd El-Rahman SS, Fayed HM (2018) Mesalazine, an osteopontin inhibitor: the potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem Biol Interact 289:109–118. https://doi.org/10.1016/j.cbi.2018.05.002
CAS
Article
PubMed
Google Scholar
Ransford RAJ, Langman MJS (2002) Sulphasalazine and mesalazine: serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the Committee on Safety of Medicines. Gut 51(4):536–539
CAS
Article
PubMed
PubMed Central
Google Scholar
Reinacher-Schick A, Seidensticker F, Petrasch S, Reiser M, Philippou S, Theegarten D, Freitag G, Schmiegel W (2000) Mesalazine changes apoptosis and proliferation in normal mucosa of patients with sporadic polyps of the large bowel. Endoscopy 32(3):245–254. https://doi.org/10.1055/s-2000-135
CAS
Article
PubMed
Google Scholar
Rockey DC, Bell PD, Hill JA. 2015. Fibrosis — a common pathway to organ injury and failure.: https://doi.org/10.1056/NEJMra1300575.
Rosenbloom J, Mendoza FA, Jimenez SA (2013) Strategies for anti-fibrotic therapies. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832(7):1088–1103. https://doi.org/10.1016/j.bbadis.2012.12.007
CAS
Article
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
CAS
Article
PubMed
Google Scholar
Schroer AK, Merryman WD (2015) Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. J Cell Sci 128(10):1865–1875. https://doi.org/10.1242/jcs.162891
CAS
Article
PubMed
PubMed Central
Google Scholar
Sertkaya A, Wong H-H, Jessup A, Beleche T (2016) Key cost drivers of pharmaceutical clinical trials in the United States. In: Key cost drivers of pharmaceutical clinical trials in the United. Clinical Trials, States. https://doi.org/10.1177/1740774515625964
Chapter
Google Scholar
Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14(8):484–491. https://doi.org/10.1038/nrcardio.2017.57
Article
PubMed
PubMed Central
Google Scholar
Thornton C, Mason JC (2012) Chapter 16 - Drugs for inflammation and joint disease. In: Bennett PN, Brown MJ, Sharma P (eds) Clinical Pharmacology, Eleventh edn. Churchill Livingstone, Oxford, pp 240–259. https://doi.org/10.1016/B978-0-7020-4084-9.00055-0
Toovey S, Hudson E, Hendry WF, Levi AJ (1981) Sulphasalazine and male infertility: reversibility and possible mechanism. Gut 22(6):445–451. https://doi.org/10.1136/gut.22.6.445
CAS
Article
PubMed
PubMed Central
Google Scholar
Uygur A, Lee RT (2016) Mechanisms of cardiac regeneration. Dev Cell 36(4):362–374. https://doi.org/10.1016/j.devcel.2016.01.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Walsh JE, Young MRI (2011) TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res 31(10):3159–3164
CAS
PubMed
PubMed Central
Google Scholar
Weil J, Colin-Jones D, Langman M, Lawson D, Logan R, Murphy M, Rawlins M, Vessey M, Wainwright P (1995) Prophylactic aspirin and risk of peptic ulcer bleeding. BMJ 310(6983):827–830. https://doi.org/10.1136/bmj.310.6983.827
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Akiyama Y, Muroi E, Hara T, Ogawa F, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S (2010) Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol 185(4):2502–2515. https://doi.org/10.4049/jimmunol.0901778
CAS
Article
PubMed
Google Scholar
Zhang Z, Li S, Deng J, Yang S, Xiang Z, Guo H, Xi H, Sang M, Zhang W (2020) Aspirin inhibits endometrial fibrosis by suppressing the TGF-β1-Smad2/Smad3 pathway in intrauterine adhesions. Int J Mol Med 45(5):1351–1360. https://doi.org/10.3892/ijmm.2020.4506
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao X, Kwan JYY, Yip K, Liu PP, Liu F-F (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19(1):57–75. https://doi.org/10.1038/s41573-019-0040-5
CAS
Article
PubMed
Google Scholar