Skip to main content
Log in

d-Ribose-l-cysteine attenuates lipopolysaccharide-induced memory deficits through inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B expression in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

d-Ribose-l-cysteine (DRLC), an analog of cysteine that boosts glutathione (GSH) content, has been reported to mitigate oxidative stress–mediated diseases. This study seeks to evaluate the effects of DRLC on memory deficits and the biochemical and histo-morphological changes induced by lipopolysaccharide (LPS) in mice. Male Swiss mice (n = 10) were pre-treated orally with three doses of DRLC (25 mg/kg, 50 mg/kg, and 100 mg/kg), donepezil (1 mg/kg), or vehicle (saline) for 30 min prior to the intraperitoneal injection of LPS (0.25 mg/kg) daily for 7 days. Memory functions were evaluated using the Y-maze, object recognition, and social recognition tests. The specific brain regions (prefrontal cortex and hippocampus) were evaluated to determine oxidative stress biomarkers (malondialdehyde, GSH, and catalase), acetyl-cholinesterase activity, proinflammatory cytokines (tumor necrosis factor-α and interleukin-6), expression of nuclear factor-kappa B (NF-κB), and neuronal cell morphology. DRLC (25–100 mg/kg) reversed the memory deficits in the LPS-treated mice (p < 0.05). The increased oxidative stress and proinflammatory cytokines in the brain regions of the LPS-treated mice were significantly (p < 0.05) reduced by DRLC. DRLC (50 mg/kg and 100 mg/kg) also reduced acetyl-cholinesterase activity and decreased NF-κB expression in the brains of LPS-treated mice. Finally, it attenuated the cytoarchitectural distortions and loss of neuronal cells of the prefrontal cortex and hippocampus that were induced by LPS in mice. The results of this study suggest that DRLC attenuates memory deficit induced by LPS in mice through mechanisms related to the inhibition of oxidative stress, release of proinflammatory cytokines, and expression of NF-κB in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adair JC, Knoefel JE, Morgan N (2001) Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 57:1515–1517

    CAS  PubMed  Google Scholar 

  • Adam-Vizi V, Seregi A (1982) Receptor independent stimulatory effect of noradrenaline on Na+/K+-ATPase in rat brain homogenate, role of lipid peroxidation. Biochem Pharmacol 34:2231–2236

    Google Scholar 

  • Adolphs R (1982) The neurobiology of social cognition. Curr Opin Neurobiol 11:231–239

    Google Scholar 

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    CAS  PubMed  Google Scholar 

  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    CAS  PubMed  Google Scholar 

  • Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AO, Omogbiya IA, Owoeye O, Umukoro S, Iwalewa EO (2019) Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol 70:338–345

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration. Multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    CAS  PubMed  Google Scholar 

  • Blokland A (2005) Scopolamine-induced deficits in cognitive performance: a review of animal studies. Scopolamine Rev 1:1–76

    Google Scholar 

  • Bluthé RM, Pawlowski M, Suarez S, Parnet P, Pittman Q, Kelley KW, Dantzer R (1994a) Synergy between tumor necrosis factor α and interleukin-1 in the induction of sickness behaviour in mice. Psychoneuroendocrinol 19:197–207

    Google Scholar 

  • Bluthé RM, Walter V, Parnet P, Layé S, Lestage J, Verrier D, Poole S, Stenning BE, Kelley KW, Dantzer R (1994b) Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III 317:499–503

    PubMed  Google Scholar 

  • Borgström L, Kågedal B, Paulsen O (1986) Pharmacokinetics of N-acetylcysteine in man. Eur J Clin Pharmacol 31:217–222

    PubMed  Google Scholar 

  • Burns A, Jacoby R, Levy R (1990) Psychiatric phenomena in Alzheimer's disease I: disorders of thought content. Br J Psychiatry J Ment Sci 157:72–76

    CAS  Google Scholar 

  • Casadesus G, Webber KM, Atwood CS, Pappolla MA, Perry G, Bowen RL, Smith MA (2006) Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta 1762:447–452

    CAS  PubMed  Google Scholar 

  • Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221:334–340

    CAS  PubMed  Google Scholar 

  • Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166

    CAS  PubMed  Google Scholar 

  • Dluzen DE, Kreutzberg JD (1993) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) disrupts social memory/recognition processes in the male mouse. Brain Res 609:98–102

    CAS  PubMed  Google Scholar 

  • Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection ofinterleukin-1beta: role of endogenous prostaglandins. J Neurosci 18:9471–9479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andre JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Google Scholar 

  • Frühauf PKS, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA (2015) Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 12:1–11

    Google Scholar 

  • Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, Jiang R, Yang L, Wu Y, Miao L, Zhu B, YangC LA (2018) Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience 388:357–366

    CAS  PubMed  Google Scholar 

  • Ghosh S, Lertwattanarak R, Garduño JDE, Galeana JJ, Li J, Zamarripa F, Lancaster JL, Mohan S, Hussey S, Musi N (2015) Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci 70:232–246

    CAS  PubMed  Google Scholar 

  • Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, Watkins LR (1999) Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 19:2799–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves C, Dos Santos DB, Portilho SS, Lopes MW, Ghizoni H, de Souza V, Mack JM, Naime AA, Dafre AL, de Souza BP, Prediger RD, Farina M (2018) Lipopolysaccharide-induced striatal nitrosative stress and impaired social recognition memory are not magnified by paraquatco exposure. Neurochem Res 43:745–759

    PubMed  Google Scholar 

  • Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germ free and conventional rat. Science 212:56–58

  • Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL (2000) Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 859:157–166

    CAS  PubMed  Google Scholar 

  • Houdek HM, Larson J, Watt JA, Rosenberger TA (2014) Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal forebrain cholinergic cells in the rat brain. Inflamm Cell Signal 1:e47

    PubMed  PubMed Central  Google Scholar 

  • Jalkanen J, Puttonen KA, Venalainen JI, Sinervä V, Mannila A, Ruotsalainen S, Jarho EM, Wallén EA, Männistö PT (2007) Beneficial effect of prolyloligopeptidase inhibition on spatial memory in young but not in old scopolamine-treated rats. Basic Clin Pharmacol Toxicol 100:132–138

    CAS  PubMed  Google Scholar 

  • Jang JH, Surh YJ (2005) Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 upregulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway. Free Radic Biol Med 38:1604–1613

    CAS  PubMed  Google Scholar 

  • Kader T, Porteous CM, Williams MJ, Gieseg SP, McCormick SP (2014) Ribose-cysteine increases glutathione-based antioxidant status and reduces LDL in human lipoprotein(a) mice. Atherosclerosis 237:725–733

    CAS  PubMed  Google Scholar 

  • Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661

    CAS  PubMed  Google Scholar 

  • Kanter MZ (2006) Comparison of oral and i.v. acetylcysteine in the treatment of acetaminophen poisoning. Am J Health Syst Pharm 63:1821–1827

    CAS  PubMed  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25:715–744

    CAS  PubMed  Google Scholar 

  • Lai WS, Ramiro LL, Yu HA, Johnston RE (2005) Recognition of familiar individuals in Golden hamsters: a new method and functional neuroanatomy. J Neurosci 25:11239–11247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. B J Anaesth 110:472–480

    CAS  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    CAS  PubMed  Google Scholar 

  • Lucas AM, Hennig G, Domnick PK, Whiteley HE, Roberts JC, Cohen SD (2000) Ribose cysteine protects against acetaminophen-induced hepatic and renal toxicity. Toxicol Pathol 28:697–704

    CAS  PubMed  Google Scholar 

  • Mandal PK, Saharan S, Tripathi M, Murari G (2015) Brain glutathione levels-a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol Psychiatry 78:702–710

    CAS  PubMed  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147

    CAS  PubMed  Google Scholar 

  • Mazzanti G, Di Giacomo S (2016) Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21:9

    Google Scholar 

  • Ming Z, Wotton CA, Appleton RT, Ching JC, Loewen ME, Sawicki G, Bekar LK (2015) Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-a and acetylcholinesterase activity. J Neuroinflammation 12:37–47

    PubMed  PubMed Central  Google Scholar 

  • Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of thedisease. CNS Neurol Disord Drug Targets 7:3–10

    CAS  PubMed  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. GLIA 55:453e462

    Google Scholar 

  • Roberts JC, Nagasawa HT, Zera RT, Fricke RF, Goon DJ (1987) Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. J Med Chem 30:1891–1896

    CAS  PubMed  Google Scholar 

  • Roberts JC, Francetic DJ (1991) Time course for the elevation of glutathione in numerous organs of L1210-bearing CDF1 mice given the L-cysteine prodrug, RibCys. Toxicol Lett 59:245–251

    CAS  PubMed  Google Scholar 

  • Roberts JC, Charyulu RL, Zera RT, Nagasawa HT (1992) Protection against acetaminophen hepatotoxicity by ribose-cysteine (Rib-Cys). Pharmacol Toxicol 70:281–285

    CAS  PubMed  Google Scholar 

  • Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. An NY Acad Sci 1403:142–149

    CAS  Google Scholar 

  • Shimazaki T, Kaku A, Chaki S (2010) D-serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology (Berlin) 209:263–270

    CAS  Google Scholar 

  • Silva LI, Carter SD, Cooper CV, Aparachita P, Shili C, Usry JL, Perryman KR (2018) Effects of oral administration of lipopolysaccharide on growth performance and immune response of nursery pigs. J Anim Sci 96:209

    Google Scholar 

  • Sinha KA (1971) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Google Scholar 

  • Sun J, Zhang S, Zhang X, Zhang X, Dong H, Qian Y (2015) IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation. J Neuroinflammation 12:165

    PubMed  PubMed Central  Google Scholar 

  • Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry AW, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    CAS  PubMed  Google Scholar 

  • Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96:1000–1006

    Google Scholar 

  • Tiwari SC, Soni RM (2014) Alzheimer’s disease pathology and oxidative stress: possible therapeutic options. J Alzheimers Dis 4:162

    Google Scholar 

  • Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    PubMed  PubMed Central  Google Scholar 

  • Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640:206–210

    CAS  PubMed  Google Scholar 

  • Vale JA, Proudfoot AT (1995) Paracetamol (acetaminophen) poisoning. Lancet 346:547–552

    CAS  PubMed  Google Scholar 

  • Wan W, Wetmore L, Sorensen CM, Greenberg AH, Nance DM (1994) Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res Bull 34:7–14

    CAS  PubMed  Google Scholar 

  • Wang W, Li S, Dong H, Lv S, Tang Y (2009) Differential impairment of spatial and nonspatial cognition in a mouse model of brain aging. Life Sci 85:127–135

    CAS  PubMed  Google Scholar 

  • Weintraub MK, Bissona CM, Nouria JN, Vinsona BT, Eimerbrink MJ, Kranjac D, Boehm GW, Chumley MJ (2013) Imatinibmethanesulfonate reduces hippocampal amyloid-beta and restores cognitive function following repeated endotoxin exposure. Brain Behav Immun 33:24–28

    CAS  PubMed  Google Scholar 

  • Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U (2018) Oxidant/antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxidative Med Cell Longev 2018:6435861 1-16

    Google Scholar 

  • Zhu F, Zheng Y, Ding Y, Liu Y, Zhang X, Wu R, Xiaofeng G, Jingping Z (2014) Minocycline and risperidone prevent microglia activation and rescue behavioural deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One 9:e93966

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the technical staff of the Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan for their kind assistance. We would also like to acknowledge Michael O. S. Afolabi, PhD, Postdoctoral Fellow, Department of Pediatrics and Child Health, University of Manitoba, Canada, for his editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

OE, BB, and SU conceived and designed the study. OE, BB, and AMA conducted experiments. OE and BB analyzed data. BB and SU wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Solomon Umukoro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emokpae, O., Ben-Azu, B., Ajayi, A.M. et al. d-Ribose-l-cysteine attenuates lipopolysaccharide-induced memory deficits through inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B expression in mice. Naunyn-Schmiedeberg's Arch Pharmacol 393, 909–925 (2020). https://doi.org/10.1007/s00210-019-01805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01805-0

Keywords

Navigation