Skip to main content
Log in

Antinociceptive, antiedematous, and antiallodynic activity of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives in experimental models of pain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of the presented study was to examine the potential antinociceptive, antiedematous (anti-inflammatory), and antiallodynic activities of two 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives (DSZ 1 and DSZ 3) in various experimental models of pain. For this purpose, the hot plate test, the capsaicin test, the formalin test, the carrageenan model, and oxaliplatin-induced allodynia tests were performed. In the hot plate test, only DSZ 1 in the highest dose (20 mg/kg) was active but its effects appear to be due to sedatation rather than antinociceptiveness. In capsaicin-induced neurogenic pain model, both compounds displayed a significant antinociceptive activity. In the formalin test, DSZ 1 and DSZ 3 (5–20 mg/kg) revealed antinociceptive activity in both phases but it was more pronounced in the second phase of the test. In this test, pretreatment with caffeine, DPCPX reversed the antinociceptive effect of DSZ 3. On the other hand, pretreatment with L-NAME diminished the antinociceptive effect of DSZ 1. Pretreatment with naloxone did not affect antinociceptive activity of both compounds. Similar to ketoprofen, DSZ 1 and DSZ 3 showed antiedematous (antiinflammatory) and antihyperalgesic activity, and similar to lidocaine local anesthetic activity. Furthermore, both compounds (5 and 10 mg/kg) reduced tactile allodynia in acute and chronic phases of neuropathic pain. In the in vitro studies, DSZ 1 and DSZ 3 reduced the COX-2 level in LPS-activated RAW 264.7 cells, which suggests their anti-inflammatory activity. In conclusion, both DSZ 1 and DSZ 3 displayed broad spectrum of activity in several pain models, including neurogenic, tonic, inflammatory, and chemotherapy-induced peripheral neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bonet IJ, Fischer CA, Parada CH, Tambeli (2013) The role of transient receptor potencial A1 (TRPA1) in the development and maintenance in carrageenan induced hyperalgesia. Neuropharmacology 65:206–212

  • Chłoń-Rzepa G, Ślusarczyk M, Jankowska A, Gawalska A, Bucki A, Kołaczkowski A, Świerczek A, Pociecha K, Wyska E, Zygmunt M, Kazek G, Sałat K, Pawłowski M (2018) Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: a new approach for the treatment of pain. Eur J Med Chem 5:517–533

    Article  Google Scholar 

  • Cury Y, Picolo G, Gutierrez VP, Ferreira SH (2010) Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide 25:243–254

    Article  Google Scholar 

  • Dziubina A, Szmyd K, Zygmunt M, Sapa J, Dudek M, Filipek B, Drabczyńska A, Załuski M, Pytka K, Kieć-Kononowicz K (2016) Evaluation of antidepressant- and anxiolytic-like activity of purinedione – derivatives with affinity to A2A receptors in mice. Pharmacol Res 68:1285–1292

    CAS  Google Scholar 

  • Eddy N, Leimbach D (1953) Synthetic analgesics. II Dithienylbutenyl - and dithienylbutylamines J Pharmacol Exp Ther 107:385–393

    CAS  PubMed  Google Scholar 

  • Erenmemisoglu A, Suer C, Temocin MH (1994) As nicotine a local anaesthetic action ? J Bas Clin Physiol Pharmacol 5:125–131

    CAS  Google Scholar 

  • Fattori V, Hohmann SN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA (2016) Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 21(7):844

    Article  Google Scholar 

  • Fereira SH, Duarte IDG, Lorenzetti BB (1991) The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur J Pharm 201:121–122

    Article  Google Scholar 

  • Flatters SJL, Dougherty PM, Colvin LA (2017) Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth 119(4):737–749

    Article  CAS  Google Scholar 

  • Florentino I, Galdino PM, De Oliveira LP, Silva DP, Pazini F et al (2015) Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide 47:17–24

    Article  CAS  Google Scholar 

  • Gao X, LuQ CG, Wang Z, Pan R, Xia Y, Hu H, Dai Y (2014) Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. E J Pain 18:939–948

    Article  CAS  Google Scholar 

  • Giorno TBS, Ballard YLL, Cordeiro MS, Silva BV, Pinto AC, Fernands PD (2015) Central and peripheral activity of 3-(2-oxopropyl)-3-hydroxy-2-oxindoles. Pharmacol Biochem Behav 135:13–19

    Article  CAS  Google Scholar 

  • Gdula-Argasińska J, Bystrowska B (2016) Docosahexaenoic acid attenuates in endocannabinoid synthesis in RAW 264.7 macrophages activated with benzo(a)pyrene and lipopolysaccharide. Toxicol Lett 258:93–100

    Article  Google Scholar 

  • Homayounfar H, Jamali-Raeufy N, Sahebgharani M, Zarrindast M-R (2005) Adenosine receptor mediates nicotine - induced antinociception in formalin test. Pharmacol Res 51:197–203

    Article  CAS  Google Scholar 

  • Hong Y, Abbott FV (1995) Peripheral opioid modulation of pain and inflammation in the formalin test. Eur J Pharmacol 277:21–28

    Article  CAS  Google Scholar 

  • Hunskaar S, Fasmer O, Hole K (1985) Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods 14:69–76

    Article  CAS  Google Scholar 

  • Lázaro-Ibáñez GG, Torres-López JE, Granados-Soto V (2001) Participation of the nitric oxide-cyclic GMP-ATP-sensitive K+ channel pathway in the antinociceptive action of ketorolac. Eur J Pharmacol 426:39–44

    Article  Google Scholar 

  • Lencˇe P (1962) A new device for plethysmoscopic measuring of small objects. Arch Int Pharmacodyn Ther 136:237–240

    Google Scholar 

  • Litchfield JT, Wilcoxon E (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Lozana-Cuenca J, Castaneda- Hernandez G, Granado –Soto (2005) Peripheral and spinal mechanizms of antinociceptive action of lumiracoxib. Eur J Pharmacol 513:81–91

  • McNamara CR, Mandel-Brehm J, Bautista DM (2007) TRPA1 agonist mediates formalin-induced pain. PNAS 104:13525–13530

    Article  CAS  Google Scholar 

  • Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  CAS  Google Scholar 

  • Munro G (2009) Pharmacological assessment of the rat formalin test utilizing the clinically used analgesic drugs gabapentin, lamotrigine, morphine, duloxetine, tramadol and ibuprofen: influence of low and high formalin concentrations. Eur J Pharmacol 605:95–102

    Article  CAS  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity of inflamed tissue. Arch Int Pharmacodyn 111:409–419

    CAS  PubMed  Google Scholar 

  • Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    Article  CAS  Google Scholar 

  • Sałat K, Librowski T, Filipek B (2010) Pharmacological profile of three different γ-butyrolactone derivatives in mice. JPCCR 4:014–018

    Google Scholar 

  • Sałat K, Cios A, Wyska E, Sałat R, Mogilski S et al (2014) Antiallodynic and antihyperalgesic activity of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one compared to pregabalin in chemotherapy-induced neuropathic pain in mice. Pharmacol Biochem Behav 122:173–181

    Article  Google Scholar 

  • Sałat K, Filipek B (2015) Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and nuropatic pain models in mice. Biomed &Biotechnol 16:167–178

    Google Scholar 

  • Sałat K, Furgała A, Sałat R (2019) Interventional and preventive effects of aripiprazole and ceftriaxone used alone or in combination on oxaliplatin-induced tactile and cold allodynia in mice. Biomed & Biotechnol 111:882–890

    Google Scholar 

  • Sawynok J (2016) Adenosine receptor targets for pain. Neurosci 338:1–18

    Article  CAS  Google Scholar 

  • Sawynok J, Reid AR (2012) Caffeine ihibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A1 receptor. Eur J Pharmacol 674:248–254

    Article  CAS  Google Scholar 

  • Sawynok J, Reid AR, Fredholm B (2010) Caffeine reverses antinociception by oxcarbazepine by inhibition of adenosine A1 receptors: insights using knockout mice. Neurosci Lett 473:178–181

    Article  CAS  Google Scholar 

  • Sawynok J, Reid AR, Fredholm B (2008) Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1 receptors. Neurosci Lett 440:181–184

    Article  CAS  Google Scholar 

  • Da Settimo A, Primofiore GF, Da Settimo F, Simorini C, La Motta A, Martinell P, Boldrini E (1996) Synthesis of pyrrolo[3,4-c]pyridine derivatives possessing an acid group and their in vitro and in vivo evaluation as aldose reductase inhibitors. Eur J Med Chem 31:49–58

    Article  Google Scholar 

  • Śladowska H, Filipek B, Szkatuła D, Sabiniarz A, Kardasz M, Potoczek J et al (2002) Investigations on the synthesis and pharmacological properties of 4alkoxy-2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl]-6-methyl-1Hpyrrolo[3,4-c]pyridine-1,3(2H)-diones. Farmaco 57:897–908

    Article  Google Scholar 

  • Śladowska H, Filipek B, Szkatuła D, Sapa J, Bednarski M, Ciołkowska M (2005) Investigations on the synthesis and pharmacological properties of N-substituted derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones. Farmaco 60:53–59

    Article  Google Scholar 

  • Śladowska H, Sabiniarz A, Szkatuła D, Filipek B, Sapa J (2006) Synthesis and properties of 4-alkoxy-2-[2-hydroxy-3-(4-o,m,phalogenoaryl-1-piperazinyl)propyl]-6-methyl-1h-pyrrolo[3,4-c]pyridine-1,3(2h)-diones with analgesic and sedative activities. Acta Pol Pharmac-Drug Res 63:245–254

    Google Scholar 

  • Śladowska H, Szkatuła D, Filipek B, Maciąg D, Sapa J, Zygmunt M (2001) Synthesis and properties of 2-(4-substituted)butyl derivatives of some 2,3-dihydro-1,3-dioxo-1H-pyrrolo[3,4-c] pyridines. Pharmacie 56:133–138

    Google Scholar 

  • Tsatsanis C, Androulidiaki A, Venihaki M, Mariqionis AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  CAS  Google Scholar 

  • Willis WD (2009) The role of TRPV1 receptors in pain evoked by noxious thermal and chemical stimuli. Exp Brain Res 196:5–11

    Article  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin - induced edema in the hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    Article  CAS  Google Scholar 

  • Wójcicka A, Becan L, Junka A, Bartoszewicz M, Secewicz A, Trynda J, Wietrzyk J (2017) Synthesis and biological activity of novel 6-phenyl-1h-pyrrolo[3,4-c]pyridine-1,3-dione derivatives. Acta Pol Pharmac- Drug Res 74:435–443

    Google Scholar 

Download references

Funding

The study was financially supported by Jagiellonian University Collegium Medicum statutory grant: K/ZDS/006237 and N42/DBS/000049.

Author information

Authors and Affiliations

Authors

Contributions

AD was responsible for the study concept, design, acquisition, and analysis of animal data, conducted the in vivo experiment, and drafted the manuscript.

DS was responsible for the generation, synthesis of the novel compounds, and critical revision for manuscript.

G-A J was responsible for in vitro experiment in cell line.

MK was responsible for determination of antioxidant activity.

BF provided critical revision for the manuscript.

All authors critically reviewed content and approved final version for publication.

Corresponding author

Correspondence to Anna Dziubina.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental procedures were conducted in accordance with the European Union Directive of 22 September 2010 (2010/63/EU) and Polish legislation concerning animal experimentation. The study was carried out under experimental protocols approved by the Local Ethical Committee in Kraków, Poland (Approval No. 4/2016, 180/2017, 181/2017, 151/2018, 218/2019).

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dziubina, A., Szkatuła, D., Gdula-Argasińska, J. et al. Antinociceptive, antiedematous, and antiallodynic activity of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives in experimental models of pain. Naunyn-Schmiedeberg's Arch Pharmacol 393, 813–827 (2020). https://doi.org/10.1007/s00210-019-01783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01783-3

Keywords

Navigation