Skip to main content

Advertisement

Log in

Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The epithelial inner layer of the lower urinary tract, i.e., the urothelium, and other parts of the mucosa are not just a passive barrier but play an active role in the sensing of stretching, neurotransmitters, paracrine mediators, hormones, and growth factors and of changes in the extracellular environment. We review the molecular and cellular mechanisms enabling the urothelium to sense such inputs and how this leads to modulation of smooth muscle contraction and relaxation. The urothelium releases various mediators including ATP, acetylcholine, prostaglandins, nitric oxide, and nerve growth factor. These may affect function and growth of smooth muscle cells and afferent nerves. However, the molecular identity of the urothelium-derived mediator directly modulating contractile and relaxant responses of isolated bladder strips has remained elusive. The morphology and function of the urothelium undergo changes with aging and in many pathophysiological conditions. Therefore, the urothelium may contribute to the therapeutic effects of established drugs to treat lower urinary tract dysfunction and may also serve as a target for novel therapeutics. However, therapeutics may also change urothelial function, and it is not always easy to determine whether such changes are part of the therapeutic response or reflect secondary alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ach:

Acetylcholine

CBS:

Cystathionine-β-synthase

CSE:

Cystathionine-γ-lyase

EFS:

Electrical field stimulation

H2S:

Hydrogen sulfide

LUT:

Lower urinary tract

NGF:

Nerve growth factor

NO:

Nitric oxide

NOS:

NO synthase

OAB:

Overactive bladder syndrome

ÜG:

Prostaglandin

TRP:

Transient receptor potential channel

UDIF:

Urothelium-derived inhibitor factor

References

  • Afiatpour P, Latifpour J, Takahashi W, Yono M, Foster HE Jr, Ikeda K, Pouresmail M, Weiss RM (2003) Developmental changes in the functional, biochemical and molecular properties of rat bladder endothelin receptors. Naunyn Schmiedeberg's Arch Pharmacol 367:462–472

    Article  CAS  Google Scholar 

  • Aizawa N, Igawa Y, Nishizawa O, Wyndaele J (2011) Effects of nitric oxide on the primary bladder afferent activities of the rat with and without intravesical acrolein treatment. Eur Urol 59:264–271

    Article  PubMed  CAS  Google Scholar 

  • Akino H, Chapple CR, McKay N, Cross RL, Murakami S, Yokoyama O, Chess-Williams R, Sellers DJ (2008) Spontaneous contractions of the pig urinary bladder: the effect of ATP-sensitive potassium channels and the role of the mucosa. BJU Int 102:1168–1174

    Article  PubMed  Google Scholar 

  • Anderson UA, Carson C, McCloskey KD (2009) KCNQ currents and their contribution to resting membrane potential and the excitability of interstitial cells of Cajal from the guinea pig bladder. J Urol 182:330–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson KE, McCloskey KD (2014) Lamina propria: the functional center of the bladder? Neurourol Urodyn 33:9–16

    Article  PubMed  Google Scholar 

  • Andersson KE, Persson K (1994) Nitric oxide synthase and nitric-oxide mediated effects in lower urinary tract smooth muscles. World J Urol 12:274–280

    PubMed  CAS  Google Scholar 

  • Andersson M, Aronsson P, Doufish D, Lampert A, Tobin G (2012) Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder. Auton Neurosci: Basic Clin 170:5–11

    Article  CAS  Google Scholar 

  • Andersson MC, Tobin G, Giglio D (2008) Cholinergic nitric oxide release from the urinary bladder mucosa in cyclophosphamide-induced cystitis of the anaesthetized rat. Br J Pharmacol 153:1438–1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anisuzzaman AS, Morishima S, Suzuki F, Tanaka T, Yoshiki H, Sathi ZS, Akino H, Yokoyama O, Muramatsu I (2008) Assessment of muscarinic receptor subtypes in human and rat lower urinary tract by tissue segment binding assay. J Pharmacol Sci 106:271–279

    Article  PubMed  CAS  Google Scholar 

  • Apodaca G, Balestreire E, Birder LA (2007) The uroepithelial-associated sensory web. Kidney Int 72:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Apostolidis A, Dasgupta P, Fowler CJ (2006) Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur Urol 49:644–650

    Article  PubMed  CAS  Google Scholar 

  • Arrighi N, Bodei S, Lucente A, Michel MC, Zani D, Simeone C, Cunico SC, Spano PF, Sigala S (2011) Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa. Pharmacol Res 64:420–425

    Article  PubMed  CAS  Google Scholar 

  • Azadzoi KM, Heim VK, Tarcan T, Siroky MB (2004) Alteration of urothelial-mediated tone in the ischemic bladder: role of eicosanoids. Neurourol Urodyn 23:258–264

    Article  PubMed  CAS  Google Scholar 

  • Azadzoi KM, Radisavljevic ZM, Golabek T, Yalla SV, Siroky MB (2010) Oxidative modification of mitochondrial integrity and nerve fiber density in the ischemic overactive bladder. J Urol 183:362–369

    Article  PubMed  Google Scholar 

  • Azadzoi KM, Tarcan T, Kozlowski R, Krane RJ, Siroky MB (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Bahadory F, Moore KH, Liu L, Burcher E (2013) Gene expression of muscarinic, tachykinin, and purinergic receptors in porcine bladder: comparison with cultured cells. Front Pharmacol 4:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballouhey Q, Panicker JN, Mazerolles C, Roumiguié M, Zaidi F, Rischmann P, Malavaud B, Gamé X (2015) Sphingosine kinase 1 urothelial expression is increased in patients with neurogenic detrusor overactivity. Int Braz J Urol 41:1141–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Barendrecht MM, Chichester P, Michel MC, Levin RM (2007) Effect of short-term outlet obstruction on rat bladder nerve density and contractility. Auton Autacoid Pharmacol 27:47–54

    Article  PubMed  CAS  Google Scholar 

  • Beckel JM, Daugherty SL, Tyagi P, Wolf-Johnston AS, Birder LA, Mitchell CH, de Groat WC (2015) Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. J Physiol 593:1857–1871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93:653–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birder LA, Apodaca G, De Groat WC, Kanai AJ (1998) Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Phys 275:F226–F229

    CAS  Google Scholar 

  • Birder LA, Barrick SR, Roppolo JR, Kanai AJ, WCD G, Kiss S, Buffington CA (2003) Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am J Physiol-Renal Physiol 285:F423–F429

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, De Groat WC (2007) Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol 4:46–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birder LA, Kanai AJ, Cruz F, Moore K, Fry CH (2010) Is the urothelium intelligent? Neurourol Urodyn 29:598–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, de Groat WC, Apodaca G, Watkins S, Caterina MJ (2002a) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Nealen ML, Kiss S, De Groat WC, Caterina MJ, Wang E, Apodaca G, Kanai AJ (2002b) ß-Adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci 22:8063–8070

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Wolf-Johnston A, Buffington CA, Roppolo JR, de Groat WC, Kanai AJ (2005) Altered inducible nitric oxide synthase expression and nitric oxide production in the bladder of cats with feline interstitial cystitis. J Urol 173:625–629

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Wolf-Johnston AS, Sun Y, Chai TC (2013) Alteration in TRPV1 and muscarinic M3 receptor expression and function in idiopathic overactive bladder urothelial cells. Acta Physiol (Oxf) 207:123–129

    Article  CAS  Google Scholar 

  • Bozkurt TE, Sahin-Erdemli I (2004) Evaluation of the rat bladder-derived relaxant factor by coaxial bioassay system. Eur J Pharmacol 495:193–199

    Article  PubMed  CAS  Google Scholar 

  • Braverman AS, Lebed B, Linder M, Ruggieri MR Sr (2007) M2 mediated contractions of human bladder from organ donors is associated with an increase in urothelial muscarinic receptors. Neurourol Urodyn 26:63–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bschleipfer T, Schukowski K, Weidner W, Grando SA, Schwantes U, Kummer W, Lips KS (2007) Expression and distribution of cholinergic receptors in the human urothelium. Life Sci 80:2303–2307

    Article  PubMed  CAS  Google Scholar 

  • Bschleipfer T, Weidner W, Kummer W, Lips KS (2012) Does bladder outlet obstruction alter the non-neuronal cholinergic system of the human urothelium? Life Sci 91:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Buckner SA, Milicic I, Daza AV, Coghlan MJ, Gopalakrishnan M (2002) Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. Br J Pharmacol 135:639–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnstock G (2014) Purinergic signalling in the urinary tract in health and disease. Purinergic Signalling 10:103–155

    Article  PubMed  CAS  Google Scholar 

  • Canda AE, Chapple CR, Chess-Williams R (2009) Pharmacologic responses of the mouse urinary bladder. Central European Journal of Medicine 4:192

    CAS  Google Scholar 

  • Carneiro I, Timoteo MA, Silva I, Vieira C, Baldaia C, Ferreirinha F, Silva-Ramos M, Correia-de-Sa P (2014) Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium. Br J Pharmacol 171:3404–3419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaiyaprasithi B, Mang CF, Kilbinger H, Hohenfellner M (2003) Inhibition of human detrusor contraction by a urothelium derived factor. J Urol 170:1897–1890

    Article  PubMed  CAS  Google Scholar 

  • Chancellor MB (2017) OnabotulinumtoxinA for overactive bladder and urinary incontinence. J Urol 197:S224–S225

    Article  PubMed  Google Scholar 

  • Chen MX, Gorman SA, Benson B, Singh K, Hieble JP, Michel MC, Tate SN, Trezise DJ (2004) Small and intermediate conductance Ca2+-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedeberg's Arch Pharmacol 369:602–615

    Article  CAS  Google Scholar 

  • Cheng JT, Yu BC, Tong YC (2007) Changes of M3-muscarinic receptor protein and mRNA expressions in the bladder urothelium and muscle layer of streptozotocin-induced diabetic rats. Neurosci Lett 423:1–5

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Scigalla FP, Zhang ZG, Stolzenburg JU, Neuhaus J (2011a) ATP enhances spontaneous calcium activity in cultured suburothelial myofibroblasts of the human bladder. PLoS One 6:e25769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Mansfield KJ, Allen W, Chess-Williams R, Burcher E, Moore KH (2014) ATP during early bladder stretch is important for urgency in detrusor overactivity patients. Biomed Res Int 2014:6

    Google Scholar 

  • Cheng Y, Mansfield KJ, Sandow SL, Sadananda P, Burcher E, Moore KH (2011b) Porcine bladder urothelial, myofibroblast, and detrusor muscle cells: characterization and ATP release. Front Pharmacol 2:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra B, Barrick SR, Meyers S, Beckel JM, Zeidel ML, Ford APDW, De Groat WC, Birder LA (2005) Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. J Physiol Lond 562:859–871

    Article  PubMed  CAS  Google Scholar 

  • Chuang S-M, Liu K-M, Li Y-L, Jang M-Y, Lee H-H, Wu W-J, Chang W-C, Levin RM, Juan Y-S (2013) Dual involvements of cyclooxygenase and nitric oxide synthase expressions in ketamine-induced ulcerative cystitis in rat bladder. Neurourol Urodyn 32:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan H-Z, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford APDW (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford APDW (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X 3-deficient mice. Nature 407:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Coelho A, Wolf-Johnston AS, Shinde S, Cruz CD, Cruz F, Avelino A, Birder LA (2015) Urinary bladder inflammation induces changes in urothelial nerve growth factor and TRPV1 channels. Br J Pharmacol 172:1691–1699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins VM, Daly DM, Liaskos M, McKay NG, Sellers D, Chapple C, Grundy D (2013) OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium. BJU Int 112:1018–1026

    PubMed  CAS  Google Scholar 

  • d’Emmanuele di Villa Bianca R, Mitidieri E, Fusco F, Russo A, Pagliara V, Tramontano T, Donnarumma E, Mirone V, Cirino G, Russo G, Sorrentino R (2016) Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production. Sci Rep 6:31491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daher A, de Boer WI, Le Frere-Belda MA, Kheuang L, Abbou CC, Radvanyi F, Jaurand MC, Thiery JP, Diez de Medina SG, Chopin DK (2004) Growth, differentiation and senescence of normal human urothelium in an organ-like culture. Eur Urol 45:799–805

    Article  PubMed  Google Scholar 

  • Daly DM, Nucchi L, Liaskos M, McKay NG, Chapple C, Grundy D (2014) Age-related changes in afferent pathways and urothelial function in the male mouse bladder. J Physiol Lond 592:537–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta SN, Roosen A, Pullen A, Popat R, Rosenbaum TP, Elneil S, Dasgupta P, Fowler CJ, Apostolidis A (2010) Immunohistochemical expression of muscarinic receptors in the urothelium and suburothelium of neurogenic and idiopathic overactive human bladders, and changes with botulinum neurotoxin administration. J Urol 184:2578–2585

    Article  PubMed  CAS  Google Scholar 

  • de Jongh R, Grol S, van Koeveringe GA, van Kerrebroeck PEV, de Vente J, Gillespie JI (2009) The localization of cyclo-oxygenase immuno-reactivity (COX I-IR) to the urothelium and to interstitial cells in the bladder wall. J Cell Mol Med 13:3069–3081

    Article  PubMed  Google Scholar 

  • De Ridder D, Roskams T, van Poppel H, Baert L (1999) Nitric oxide synathase expression in neurogeneic bladder disease: a pilot study. Acta Neurol Belg 99:57–60

    PubMed  Google Scholar 

  • Deckmann K, Rafiq A, Erdmann C, Illig C, Durschnabel M, Wess J, Weidner W, Bschleipfer T, Kummer W (2018) Muscarinic receptors 2 and 5 regulate bitter response of urethral brush cells via negative feedback. The FASEB Journal in press: fj.201700582R

  • Downie JW, Karmazyn M (1984) Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J Pharmacol Exp Ther 230:445–449

    PubMed  CAS  Google Scholar 

  • Doyle C, Cristofaro V, Sack BS, Mahmood F, Sullivan MP, Adam RM (2018) The role of the mucosa in modulation of evoked responses in the spinal cord injured rat bladder. Neurourol Urodyn in press

  • Eika B, Levin RM, Monson FC, Murphy M, Longhurst PA (1993) 3H-Thymidine uptake by the rat urinary bladder after induction of diabetes mellitus. J Urol 150:1316–1320

    Article  PubMed  CAS  Google Scholar 

  • Eryildirim B, Tarhan F, Gül AE, Erbay E, Kuyumcuoglu U (2006) Immunohistochemical analysis of low-affinity nerve growth factor receptor in the human urinary bladder. Urol Int 77:76–80

    Article  PubMed  CAS  Google Scholar 

  • Farr SE, Chess-Williams R, McDermott CM (2017) Gemcitabine: selective cytotoxicity, induction of inflammation and effects on urothelial function. Toxicol Appl Pharmacol 316:1–9

    Article  PubMed  CAS  Google Scholar 

  • Fathian-Sabet B, Bloch W, Klotz T, Niggemann S, Jacobs G, Addicks K, Engelmann U (2001) Localization of constitutive nitric oxide synthase isoforms and the nitric oxide target enzyme soluble guanylyl cyclase in the human bladder. J Urol 165:1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–possible sensory mechanism? J Physiol 505:503–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folasire OS, Chess-Williams R, Sellers DJ (2017) Inhibitory effect of the urothelium/lamina propria on female porcine urethral contractility & effect of age. Clin Exp Pharmacol Physiol 44:954–960

    Article  PubMed  CAS  Google Scholar 

  • Forner S, Andrade EL, Martini AC, Bento AF, Medeiros R, Koepp J, Calixto JB (2012) Effects of kinin B1 and B2 receptor antagonists on overactive urinary bladder syndrome induced by spinal cord injury in rats. Br J Pharmacol 167:1737–1752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fovaeus M, Fujiwara M, Högestätt ED, Persson K, Andersson KE (1999) A non-nitrergic smooth muscle relaxant factor released from rat urinary bladder by muscarinic receptor stimulation. J Urol 161:649–653

    Article  PubMed  CAS  Google Scholar 

  • Frazier EP, Mathy MJ, Peters SLM, Michel MC (2005) Does cyclic AMP mediate rat urinary bladder relaxation by isoproterenol? J Pharmacol Exp Ther 313:260–267

    Article  PubMed  CAS  Google Scholar 

  • Fry CH, Vahabi B (2016) The role of the mucosa in normal and abnormal bladder function. Basic Clin Pharmacol Toxicol 119(Suppl. 3):57–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fusco F, d’Emmanuele di Villa Bianca R, Mitidieri E, Cirino G, Sorrentino R, Mirone V (2012) Sildenafil effect on the human bladder involves the L-cysteine/hydrogen sulfide pathway: a novel mechanism of action of phosphodiesterase type 5 inhibitors. Eur Urol 62:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pascual A, Costa G, Garcia-Sacristan A, Andersson KE (1991) Relaxation of sheep urethral muscle induced by electrical stimulation of nerves: involvement of nitric oxide. Acta Physiol Scand 141:531–539

    Article  PubMed  CAS  Google Scholar 

  • Giglio D, Ryberg AT, To K, Delbro DS, Tobin G (2005) Altered muscarinic receptor subtype expression and functional responses in cyclophosphamide induced cystitis in rats. Autonomic Neuroscience: Basic and Clinical 122:9–20

    Article  CAS  Google Scholar 

  • Gillespie JI, Drake MJ (2004) The acctions of sodium nitroprusside and the phosphodiesterase inhibitor dipyridamole on phasic activity in the isolated guinea pig bladder. BJU Int 93:851–858

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI, Markerink-van Ittersum M, De Vente J (2004) cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int 94:1114–1124

    Article  PubMed  Google Scholar 

  • Gillespie JI, Markerink-van Ittersum M, de Vente J (2005) Expression of neuronal nitric oxide synthase (nNOS) and nitric-oxide-induced changes in cGMP in the urothelial layer of the guinea pig bladder. Cell Tissue Res 321:341–351

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI, Markerink-van Ittersum M, De Vente J (2006) Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 325:325–332

    Article  PubMed  CAS  Google Scholar 

  • Girard B, Cheppudira B, Malley S, Schutz K, May V, Vizzard M (2011) Increased expression of interleukin-6 family members and receptors in urinary bladder with cyclophosphamide-induced bladder inflammation in female rats. Front Neurosci 5

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42:378–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girard BM, Tompkins JD, Parsons RL, May V, Vizzard MA (2012) Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium. J Mol Neurosci 48:730–743

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goepel M, Wittmann A, Rübben H, Michel MC (1997) Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res 25:199–206

    Article  PubMed  CAS  Google Scholar 

  • Grol S, Essers PBM, van Koeveringe GA, Martinez-Martinez P, de Vente J, Gillespie JI (2009) M3 muscarinic receptor expression on suburothelial interstitial cells. BJU Int 104:398–405

    Article  PubMed  CAS  Google Scholar 

  • Guan NN, Nilsson KF, Wiklund PN, Gustafsson LE (2014) Release and inhibitory effects of prostaglandin D2 in guinea pig urinary bladder and the role of urothelium. Biochim Biophys Acta Gen Subj 1840:3443–3451

    Article  CAS  Google Scholar 

  • Ha US, Park EY, Kim JC (2011) Effect of botulinum toxin on expression of nerve growth factor and transient receptor potential vanilloid 1 in urothelium and detrusor muscle of rats with bladder outlet obstruction-induced detrusor overactivity. Urology 78:721.e721–721.e726

    Google Scholar 

  • Haefliger JA, Tissieres P, Tawadros T, Formenton A, Beny JL, Nicod P, Frey P, Meda P (2002) Connexins 43 and 26 are differentially increased after rat bladder outlet obstruction. Exp Cell Res 274:216–225

    Article  PubMed  CAS  Google Scholar 

  • Hanna-Mitchell AT, Beckel JM, Barbadora S, Kanai AJ, de Groat WC, Birder LA (2007) Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci 80:2298–2302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanna-Mitchell AT, Ruiz GW, Daneshgari F, Liu G, Apodaca G, Birder LA (2013) Impact of diabetes mellitus on bladder uroepithelial cells. Am J Phys 304:R84–R93

    CAS  Google Scholar 

  • Hanna-Mitchell AT, Wolf-Johnston AS, Barrick SR, Kanai AJ, Chancellor MB, De Groat WC, Birder LA (2015) Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol Urodyn 34:79–84

    Article  PubMed  CAS  Google Scholar 

  • Harmon EB, Porter JM, Porter JE (2005) ß-Adrenergic receptor activation in immortalized human urothelial cells stimulates inflammatory responses by PKD-independent mechanisms. Cell Commun Signal 3:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey RA, Skennerton DE, Newgreen D, Fry CH (2002) The contractile potency of adenosine triphosphate and ecto-adenosine triphosphatase activity in guinea pig detrusor and detrusor from patients with a stable, unstable or obstructed bladder. J Urol 168:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Hawthorn MH, Chapple CR, Cock M, Chess-Williams R (2000) Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol 129:416–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernández M, Barahona MV, Recio P, Navarro-Dorado J, Bustamante S, Benedito S, García-Sacristán A, Prieto D, Orensanz LM (2008) Role of neuronal voltage-gated K+ channels in the modulation of the nitrergic neurotransmission of the pig urinary bladder neck. Br J Pharmacol 153:1251–1258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A (2007) Role of gap junctions in spontaneous activity of the rat bladder. Am J Physiol-Renal Physiol 293:F1018–F1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishihama H, Momota Y, Yanase H, Wang X, De Groat WC, Kawatani M (2006) Activation of α1D adrenergic receptors in the rat urothelium facilitates the micturition reflex. J Urol 175:358–364

    Article  PubMed  CAS  Google Scholar 

  • Janssen DAW, Hoenderop JG, Jansen KCFJ, Kemp AW, Heesakkers JPFA, Schalken JA (2011) The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J Urol 186:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Jeremy JY, Tsang V, Mikhailidis DP, Rogers H, Morgan RJ, Dandona P (1987) Eicosanoid synthesis by human urinary bladder mucosa: pathological implications. Br J Urol 59:36–39

    Article  PubMed  CAS  Google Scholar 

  • Johansson R, Pandita RK, Poljakovic M, Garcia-Pascual A, de Vente J, Persson K (2002a) Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth. J Urol 168:2689–2694

    Article  PubMed  CAS  Google Scholar 

  • Johansson RK, Poljakovic M, Andersson KE, Persson K (2002b) Expression of nitric oxide synthase in bladder smooth muscle cells: regulation by cytokines and L-arginine. J Urol 168:2280–2285

    Article  PubMed  CAS  Google Scholar 

  • Jositsch G, Papadakis T, Haberberger RV, Wolff M, Wess J, Kummer W (2009) Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedeberg's Arch Pharmacol 379:389–395

    Article  CAS  Google Scholar 

  • Kanai A, Roppolo J, Ikeda Y, Zabbarova I, Tai C, Birder L, Griffiths D, Wd G, Fry C (2007) Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists. Am J Physiol-Renal Physiol 292:F1065–F1072

    Article  PubMed  CAS  Google Scholar 

  • Kang S-H, Chess-Williams R, Anoopkumar-Dukie S, McDermott C (2013) Induction of inflammatory cytokines and alteration of urothelial ATP, acetylcholine and prostaglandin E2 release by doxorubicin. Eur J Pharmacol 700:102–109

    Article  PubMed  CAS  Google Scholar 

  • Kang SH, Chess-Williams R, Anoopkumar-Dukie S, McDermott C (2015) Recovery of urothelial mediated release but prolonged elevations in interleukin-8 and nitric oxide section following mitomycin C treatment. Naunyn Schmiedeberg's Arch Pharmacol 388:781–791

    Article  CAS  Google Scholar 

  • Kedia GT, Neumayer E, Scheller F, Kuczyk MA, Uckert S (2009) In vitro effects of a novel class of nitric oxide donating compounds on isolated human urinary bladder. Georgian Med News 167:7–16

    Google Scholar 

  • Krege S, Kinzig-Schppers M, Sörgel F, Baschek R, Michel MC, Rübben H (2004) Absorption of intravesically applied drugs: comparison of normal and ileal-augmented rabbit bladder. J Urol 172:2045–2050

    Article  PubMed  CAS  Google Scholar 

  • Kullmann FA, Artim D, Beckel J, Barrick S, WCd G, Birder LA (2008a) Heterogeneity of muscarinic receptor-mediated Ca2+ responses in cultured urothelial cells from rat. Am J Physiol-Renal Physiol 294:F971–F981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kullmann FA, Artim DE, Birder LA, de Groat WC (2008b) Activation of muscarinic receptors in rat bladder sensory pathways alters reflex bladder activity. J Neurosci 28:1977–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kullmann FA, Downs TR, Artim DE, Limberg BJ, Shah M, Contract D, De Groat WC, Rosenbaum JS (2011) Urothelial beta-3 adrenergic receptors in the rat bladder. Neurourol Urodyn 30:144–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Chapple C, Chess-Williams R (2004) Characteristics of adenosine triphosphate [corrected] release from porcine and human normal bladder. J Urol 172:744–747

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chapple CR, Rosario D, Tophill PR, Chess-Williams R (2010) In vitro release of adenosine triphosphate from the urothelium of human bladders with detrusor overactivity, both neurogenic and idiopathic. Eur Urol 57:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chapple CR, Surprenant AM, Chess-Williams R (2007) Enhanced adenosine triphosphate release from the urothelium of patients with painful bladder syndrome: a possible pathophysiological explanation. J Urol 178:1533–1536

    Article  PubMed  CAS  Google Scholar 

  • Kurizaki Y, Ishizuka O, Imamura T, Ichino M, Ogawa T, Igawa Y, Nishizawa O, Andersson KE (2011) Relation between expression of α1-adrenoceptor mRNAs in bladder mucosa and urodynamic findings in men with lower urinary tract symptoms. Scand J Urol Nephrol 45:15–19

    Article  PubMed  CAS  Google Scholar 

  • Kurizaki Y, Ishizuka O, Imamura T, Ishikawa M, Ichino M, Ogawa T, Nishizawa O, Andersson KE (2013) Relationship between expression of ß3-adrenoceptor mRNA in bladder mucosa and urodynamic findings in men with lower urinary tract symptoms. Neurourol Urodyn 32:88–91

    Article  PubMed  CAS  Google Scholar 

  • Kurzrock EA, Lieu DK, de Graffenried LA, Isseroff RR (2005) Rat urothelium: improved techniques for serial cultivation, expansion, freezing and reconstitution onto acellular matrix. J Urol 173:281–285

    Article  PubMed  Google Scholar 

  • Lazzeri M, Vannucchi MG, Spinelli M, Bizzoco E, Beneforti P, Turini D, Faussone-Pellegrini MS (2005) Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur Urol 48:691–698

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Bardini M, Burnstock G (2000) Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 163:2002–2007

    Article  PubMed  CAS  Google Scholar 

  • Levin RM, Wein AJ, Krasnopolsky L, Atta MA, Ghoniem GM (1995) Effect of mucosal removal on the response of the feline bladder to pharmacological stimulation. J Urol 153:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • Li M, Sun Y, Tomiya N, Hsu Y, Chai TC (2013) Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release. Am J Physiol-Renal Physiol 305:F445–F450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Z, Chen S, Ye C, Zhu S (2003) Nitric oxide synthase expression in human bladder cancer and its relation to angiogenesis. Urol Res 31:232–235

    Article  PubMed  CAS  Google Scholar 

  • Lips KS, Wunsch J, Sarghooni S, Bschleipfer T, Schukowski K, Weidner W, Wessler I, Schwantes U, Koepsell H, Kummer W (2007) Acetylcholine and molecular components of its synthesis and release machinery in the urothelium. Eur Urol 51:1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Daneshgari F (2006) Temporal diabetes- and diuresis-induced remodeling of the urinary bladder in the rat. Am J Physiol Regul Integr Comp Physiol 291:R837–R843

    Article  PubMed  CAS  Google Scholar 

  • Lowe EM, Anand P, Terengh G, Williams-Chestnut RE, Sinicropi DV, Osborne JL (1997) Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 79:572–577

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Parlani M, Astolfi M, Patacchini R, Meli A (1987) The presence of mucosa reduces the contractile response of the guinea-pig urinary bladder to substance P. J Pharm Pharmacol 39:653–655

    Article  PubMed  CAS  Google Scholar 

  • Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E (2009) Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther 328:893–899

    Article  PubMed  CAS  Google Scholar 

  • Mansfield KJ, Hughes JR (2014a) Effect of inflammatory mediators on ATP release of human urothelial RT4 cells. Biomed Res Int 2014:6

    Google Scholar 

  • Mansfield KJ, Hughes JR (2014b) P2Y receptor modulation of ATP release in the urothelium. Biomed Res Int 2014:8

    Google Scholar 

  • Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E (2005) Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol 144:1089–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masick JM, Levin RM, Hass MA (2001) The effect of partial outlet obstruction on prostaglandin generation in the rabbit urinary bladder. Prostaglandins Other Lipid Mediat 66:211–219

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo D, Iselin CE (2007) Urothelium dependent inhibition of rat ureter contractile activity. J Urol 178:702–709

    Article  PubMed  CAS  Google Scholar 

  • Masunaga K, Chapple CR, McKay NG, Yoshida M, Sellers DJ (2010) The ß3-adrenoceptor mediates the inhibitory effects of ß-adrenoceptor agonists via the urothelium in pig bladder dome. Neurourol Urodyn 29:1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Masunaga K, Yoshida M, Inadome A, Iwashita H, Miyamae K, Ueda S (2006) Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int J Urol 13:271–276

    Article  PubMed  CAS  Google Scholar 

  • McLatchie LM, Fry CH (2015) ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved. BJU Int 115:987–993

    Article  PubMed  CAS  Google Scholar 

  • McLatchie LM, Young JS, Fry CH (2014) Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br J Pharmacol 171:3394–3403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng E, Young JS, Brading AF (2008) Spontaneous activity of mouse detrusor smooth muscle and the effects of the urothelium. Neurourol Urodyn 27:79–87

    Article  PubMed  Google Scholar 

  • Meyer-Siegler KL, Vera PL (2004) Substance P induced release of macrophage migration inhibitor factor from rat bladder epithelium. J Urol 171:1698–1703

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Seifert R (2015) Selectivity of pharmacological tools: implications for use in cell physiology. Am J Phys 308:C505–C520

    Article  CAS  Google Scholar 

  • Michel MC, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedeberg's Arch Pharmacol 377:385–388

    Article  CAS  Google Scholar 

  • Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y, Suzuki Y, Koizumi S, Takeda M, Tominaga M (2014) Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem 289:16565–16575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moon A (2002) Influence of nitric oxide signalling pathways on pre-contracted human detrusor smooth muscle in vitro. BJU Int 89:942–949

    Article  PubMed  CAS  Google Scholar 

  • Munoz A, Gangitano DA, Smith CP, Boone TB, Somogyi GT (2010) Removal of urothelium affects bladder contractility and release of ATP but not release of NO in rat urinary bladder. BMC Urol 10:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munoz A, Smith CP, Boone TB, Somogyi GT (2011) Overactive and underactive bladder dysfunction is reflected by alterations in urothelial ATP and NO release. Neurochem Int 58:295–300

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Chapple CR, Akino H, Sellers DJ, Chess-Williams R (2007) The role of the urothelium in mediating bladder responses to isoprenaline. BJU Int 99:669–673

    Article  PubMed  CAS  Google Scholar 

  • Murray E, Malley SE, Qiao LY, Hu VY, Vizzard MA (2004) Cyclophosphamide induced cystitis alters neurotrophin and receptor tyrosine kinase expression in pelvic ganglia and bladder. J Urol 172:2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T, Kubota Y, Mitani A, Maruko T, Sakamoto K, Ishii K (2003) Protease-activated receptor-2-mediated contraction in the rat urinary bladder: the role of urinary bladder mucosa. Naunyn Schmiedeberg's Arch Pharmacol 367:211–213

    Article  CAS  Google Scholar 

  • Negoro H, Urban-Maldonado M, Liou LS, Spray DC, Thi MM, Suadicani SO (2014) Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 9:e106269

    Article  PubMed  PubMed Central  Google Scholar 

  • Nile CJ, De Vente J, Gillespie JI (2010) Stretch independent regulation of prostaglandin E2 production within the isolated guinea-pig lamina propria. BJU Int 105:540–548

    Article  PubMed  CAS  Google Scholar 

  • Nile CJ, Gillespie JI (2012) Interactions between cholinergic and prostaglandin signaling elements in the urothelium: role for muscarinic type 2 receptors. Urology 79:240.e217–240.e223

    Article  Google Scholar 

  • Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814

    Article  PubMed  CAS  Google Scholar 

  • Ochodnicky P, Cruz CD, Yoshimura N, Michel MC (2011) Nerve growth factor in bladder dysfunction: contributing factor, biomarker and therapeutic target. Neurourol Urodyn 30:1227–1241

    PubMed  CAS  Google Scholar 

  • Ochodnicky P, Humphreys S, Eccles R, Poljakovic M, Wiklund P, Michel MC (2012) Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines. BJU Int 110:e293–e300

    Article  PubMed  CAS  Google Scholar 

  • Ochodnicky P, Michel-Reher MB, Butter JJ, Seth J, Panicker JN, Michel MC (2013) Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium. Pharmacol Res 70:147–154

    Article  PubMed  CAS  Google Scholar 

  • Otsuka A, Kawasaki H, Matsumoto R, Shinbo H, Kurita Y, Iwashita T, Ozono S (2013) Expression of ß-adrenoceptor subtypes in urothelium, interstitial cells and detrusor of the human urinary bladder. Lower Urinary Tract Symptoms 5:173–180

    Article  PubMed  CAS  Google Scholar 

  • Otsuka A, Shinbo H, Matsumoto R, Kurita Y, Ozono S (2008) Expression and functional role of ß-adrenoceptors in the human urinary bladder. Naunyn Schmiedeberg's Arch Pharmacol 377:473–481

    Article  CAS  Google Scholar 

  • Pak KJ, Ostrom RS, Matsui M, Ehlert FJ (2010) Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder. Naunyn Schmiedeberg's Arch Pharmacol 381:441–454

    Article  CAS  Google Scholar 

  • Parsons CL (2011) The role of a leaky epithelium and potassium in the generation of bladder symptoms in interstitial cystitis/overactive bladder, urethral syndrome, prostatitis and gynaecological chronic pelvic pain. BJU Int 107:370–375

    Article  PubMed  Google Scholar 

  • Pinna C, Caratozzolo O, Puglisi L (1992) A possible role of urinary bladder epithelium in bradykinin-induced contraction in diabetic rats. Eur J Pharmacol 214:143–148

    Article  PubMed  CAS  Google Scholar 

  • Pinna C, Ventura S, Puglisi L, Burnstock G (1996) A pharmacological and histochemical study of hamster urethra and the role of urothelium. Br J Pharmacol 119:655–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitre DA, Ma T, Wallace LJ, Bauer JA (2002) Time-dependent urinary bladder remodeling in the streptozotocin-induced diabetic rat model. Acta Diabetol 39:23–27

    Article  PubMed  CAS  Google Scholar 

  • Propping S, Newe M, Lorenz K, Wirth MP, Ravens U (2015a) ß-Adrenoceptor-mediated relaxation of carbachol-pre-contracted mouse detrusor. Urol Int 95:92–98

    Article  PubMed  CAS  Google Scholar 

  • Propping S, Roedel M, Wirth MP, Ravens U (2015b) Pharmacological modulation of mucosa-related impairment of ß-adrenoceptor-mediated relaxation in human detrusor. Urol Int 95:300–308

    Article  PubMed  CAS  Google Scholar 

  • Propping S, Wuest M, Eichhorn B, Wirth MP, Kaumann AJ, Ravens U (2013) Mucosa of human detrusor impairs contraction and ß-adrenoceptor-mediated relaxation. BJU Int 112:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Rahnama'i MS, van Koeveringe GA, Essers PB, de Wachter SGG, de Vente J, van Kerrebroeck PE, Gillespie JI (2010) Prostaglandin receptor EP1 and EP2 site in Guinea pig bladder urothelium and lamina propria. J Urol 183:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Rahnama’i MS, Biallosterski BT, de Wachter SGG, Van Kerrebroeck PEV, van Koeveringe GA (2012) The distribution of the prostaglandin E receptor type 2 (EP2) in the detrusor of the Guinea pig. Prostaglandins Other Lipid Mediat 99:107–115

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro ASF, Fernandes VS, Martinez MP, Martinez-Saenz A, Pazos MR, Orensanz LM, Recio P, Bustamente S, Carballido J, Garcia-Sacristan A, Prieto D, Hernandez M (2014) Neuronal and non-neuronal bradykinin receptors are involved in the contraction and/or relaxation to the pig bladder neck smooth muscle. Neurourol Urodyn this issue

  • Roedel M, Ravens U, Kasper M, Wirth MP, Jepps TA, Propping S (2018) Contractile responses in intact and mucosa-denuded human ureter—a comparison with urinary bladder detrusor preparations. Naunyn Schmiedebergs Arch Pharmacol this issue

  • Romih R, Korošec P, de Mello W, Jezernik K (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320:259–268

    Article  PubMed  Google Scholar 

  • Saban R, Keith IM, Nielsen KT, Christensen MM, Rhodes PR, Bruskewitz RC (1992) In vitro effects of bladder mucosa and an enkephalinase inhibitor on tachykinin induced contractility of the dog bladder. J Urol 147:750–755

    Article  PubMed  CAS  Google Scholar 

  • Saban R, Undem BJ, Keith IM, Saban MR, Tengowski MW, Graziano FM, Bjorling DE (1994) Differential release of prostaglandins and leukotrienes by sensitized Guinea pig urinary bladder layers upon antigen challenge. J Urol 152:544–549

    Article  PubMed  CAS  Google Scholar 

  • Sadananda P, Chess-Williams R, Burcher E (2008) Contractile properties of the pig bladder mucosa in response to neurokinin A: a role for myofibroblasts? Br J Pharmacol 153:1465–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadananda P, Kao FCL, Liu L, Mansfield KJ, Burcher E (2012) Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: are ASIC and TRPV1 receptors involved? Eur J Pharmacol 683:252–259

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Kobayashi T, Negoro H, Sengiku A, Hiratsuka T, Kamioka Y, Liou LS, Ogawa O, Matsuda M (2016) Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP. Physiological Reports 4

  • Santarosa R, Colombel MC, Kaplan S, Monson F, Levin RM, Buttyan R (1994) Hyperplasia and apoptosis. Opposing cellular processes that regulate the response of the rabbit bladder to transient outlet obstruction. Laboratory Investigations 70:503–510

    CAS  Google Scholar 

  • Santoso AGH, Sonarno IAB, Arsad NAB, Liang W (2010) The role of the urothelium and ATP in mediating detrusor smooth muscle contractility. Urology 76:1267.e1267–1267.e1212

    Article  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G, Bhattacharya A, Nunn PA, Ford APDW, Vizzard A, Cockayne DA (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Phys 298:R534–R547

    CAS  Google Scholar 

  • Silva I, Ferreirinha F, Magalhães-Cardoso MT, Silva-Ramos M, Correia-de-Sá P (2015) Activation of P2Y6 receptors facilitates nonneuronal adenosine triphosphate and acetylcholine release from urothelium with the lamina propria of men with bladder outlet obstruction. J Urol 194:1146–1154

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ, Chess-Williams R, McDermott C (2014) Luminal DMSO: effects on detrusor and urothelial/lamina propria function. Biomed Res Int 2014:8

    Google Scholar 

  • Stenqvist J, Winder M, Carlsson T, Aronsson P, Tobin G (2017) Urothelial acetylcholine involvement in ATP-induced contractile responses of the rat urinary bladder. Eur J Pharmacol 809:253–260

    Article  PubMed  CAS  Google Scholar 

  • Sui G-P, Wu C, Roosen A, Ikeda Y, Kanai AJ, Fry CH (2008) Modulation of bladder myofibroblast activity: implications for bladder function. Am J Physiol-Renal Physiol 295:F688–F697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sui G, Fry CH, Montgomery B, Roberts M, Wu R, Wu C (2014) Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol-Renal Physiol 306:F286–F298

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Chai TC (2006) Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. Am J Phys Cell Phys 290:C27–C34

    Article  CAS  Google Scholar 

  • Sun Y, Keay S, Lehrfeld TJ, Chai TC (2009) Changes in adenosine triphosphate-stimulated ATP release suggest association between cytokine and purinergic signaling in bladder urothelial cells. Urology 74:1163–1168

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka I, Nagase K, Tanase K, Aoki Y, Akino H, Yokoyama O (2011) Modulation of stretch evoked adenosine triphosphate release from bladder epithelium by prostaglandin E2. J Urol 185:341–346

    Article  PubMed  CAS  Google Scholar 

  • Templeman L, Chapple CR, Chess-Williams R (2002) Urothelium derived inhibitory factor and cross-talk among receptors in the trigone of the bladder of the pig. J Urol 167:742–745

    Article  PubMed  CAS  Google Scholar 

  • Theobald RJ (2003) Differing effects of NG-monomethyl L-arginine and 7-nitroindazole on detrusor activity. Neurourol Urodyn 22:62–69

    Article  PubMed  CAS  Google Scholar 

  • Thorneloe KS, Knorn AM, Doetsch PE, Lashinger ESR, Liu AX, Bond CT, Adelman JP, Nelson MT (2008) Small-conductance, Ca2+-activated K+ channel 2 is the key functional component of SK channels in mouse urinary bladder. Am J Phys 294:R1737–R1743

    CAS  Google Scholar 

  • Timóteo MA, Carneiro I, Silva I, Noronha-Matos JB, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P (2014) ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors. Biochem Pharmacol 87:371–379

    Article  PubMed  CAS  Google Scholar 

  • Tong Y-C, Cheng J-T, Hsu C-T (2006) Alterations of M2-muscarinic receptor protein and mRNA expression in the urothelium and muscle layer of the streptozotocin-induced diabetic rat urinary bladder. Neurosci Lett 406:216–221

    Article  PubMed  CAS  Google Scholar 

  • Tong YC, Cheng JT (2007) Alterations of M 2.3-muscarinic receptor protein and mRNA expression in the bladder of the fructose fed obese rat. J Urol 178:1537–1542

    Article  PubMed  CAS  Google Scholar 

  • Truschel ST, Wang E, Ruiz WG, Leung S-M, Rojas R, Lavelle J, Zeidel M, Stoffer D, Apodaca G (2002) Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell 13:830–846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyagi P, Thomas CA, Yoshimura N, Chancellor MB (2009a) Investigations into the presence of functional ß1, ß2 and ß3-adrenoceptors in urothelium and detrusor of human bladder. Int Braz J Urol 35:76–83

    Article  PubMed  Google Scholar 

  • Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol 176:1673–1678

    Article  PubMed  CAS  Google Scholar 

  • Tyagi V, Philips BJ, Su R, Smaldone MC, Erickson VL, Chancellor MB, Yoshimura N, Tyagi P (2009b) Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 181:1932–1938

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan S, Krishnan KR, Mansour P, Soni BM, McDicken I (1998) p75 nerve growth factor receptor in the vesical urothelium of patients with neuropatic bladder: an immunohistochemical study. Spinal Cord 36:541–547

    Article  PubMed  CAS  Google Scholar 

  • Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford APDW, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    Article  PubMed  CAS  Google Scholar 

  • Walden PD, Durkin MM, Lepor H, Wetzel JM, Gluchowski C, Gustafson EL (1997) Localization of mRNA and receptor binding sites for the α1A-adrenoceptor subtype in the rat, monkey and human urinary bladder and prostate. J Urol 157:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Wang ECY, Lee J-M, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor–dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng TI, Wu HY, Lin PY, Liu SH (2009) Uropathogenic Escherichia coli-induced inflammation alters mouse urinary bladder contraction via an interleukin-6-activated inducible nitric oxide synthase-related pathway. Infect Immun 77:3312–3319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuest M, Kaden S, Hakenberg OW, Wirth MP, Ravens U (2005) Effect of rilmakalim on detrusor contraction in the presence and absence of urothelium. Naunyn Schmiedeberg's Arch Pharmacol 372:203–212

    Article  CAS  Google Scholar 

  • Xiao N, Huang Y, Kavran M, Elrashidy RA, Liu G (2015) Short-term diabetes- and diuresis-induced alterations of the bladder are mostly reversible in rats. Int J Urol 22:410–415

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama O, Tanaka I, Kusukawa N, Yamauchi H, Ito H, Aoki Y, Oyama N, Miwa Y, Akino H (2011) Antimuscarinics suppress adenosine triphosphate and prostaglandin E2 release from urothelium with potential improvement in detrusor overactivity in rats with cerebral infarction. J Urol 185:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K, Sugiyama Y, Murakami S (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430

    Article  PubMed  Google Scholar 

  • Yoshida M, Masunaga K, Nagata T, Maeda Y, Miyamoto Y, Kudoh J, Homma Y (2009) Attenuation of non-neuronal adenosine triphosphate release from human bladder mucosa by antimuscarinic agents. LUTS 1:88–92

    CAS  Google Scholar 

  • Yoshida M, Masunaga K, Satoji Y, Maeda Y, Nagata T, Inadome A (2008) Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in urothelium and its clinical significance. J Pharmacol Sci 106:193–198

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A (2004) Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63(Suppl. 1):17–23

    Article  PubMed  Google Scholar 

  • Young JS, Matharu R, Carew MA, Fry CH (2012) Inhibition of stretching-evoked ATP release from bladder mucosa by anticholinergic agents. BJU Int 110:E397–E401

    Article  PubMed  CAS  Google Scholar 

  • Zarghooni S, Wunsch J, Bodenbenner M, Brüggmann D, Grando SA, Schwantes U, Wess J, Kummer W, Lips KS (2007) Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci 80:2308–2313

    Article  PubMed  CAS  Google Scholar 

  • Zhang QL, Qiao L-Y (2012) Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder. Regul Pept 177:73–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ labs is being or has been funded by the Australian National Health and Medical Research Council, Cancer Council Queensland, Australian Bladder Foundation and Deutsche Forschungsgemeinschaft (Mi 294/8-1).

Author information

Authors and Affiliations

Authors

Contributions

DS, RCW, and MCM conceived the outline of this review, retrieved and extracted the references, and contributed to write sections of the manuscript. All authors read, critically revised for content, and approved the manuscript.

Corresponding author

Correspondence to Martin C. Michel.

Ethics declarations

Conflict of interest

DS and RCW do not declare a conflict of interest. In the field of urology, MCM is a consultant to and shareholder of Velicept Therapeutics, a former employee (2011–2016) and present consultant of Boehringer Ingelheim, and a consultant of Apogepha and Dr. Wilmar Schwabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellers, D., Chess-Williams, R. & Michel, M.C. Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. Naunyn-Schmiedeberg's Arch Pharmacol 391, 675–694 (2018). https://doi.org/10.1007/s00210-018-1510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1510-8

Keywords

Navigation