Skip to main content
Log in

PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose) polymerase (PARP) enzyme contributes to nephropathy, a serious diabetic complication which may lead to end-stage renal disease. The study aims to investigate the effect of PARP over-activation on kidney functions in a type 2 diabetic rat model. The study also tests the therapeutic use of PARP inhibitors in diabetic nephropathy. Type 2 diabetes was induced in adult male rats by high-fructose/high-fat diet and low streptozotocin dose. Then, the PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for 10 weeks. At the end, urine samples were collected to measure urine creatinine, albumin, and total proteins. PARP activity, superoxide dismutase (SOD) activity, and nitrite content were measured in kidney tissue homogenate. Glucose, fructosamine, insulin, and tumor necrosis factor-alpha (TNF-α) were measured in serum. Furthermore, histological studies, collagen deposition, and immunofluorescence of nuclear factor kappa B (NFκB) and transforming growth factor beta1 (TGF-β1) were carried out. PARP enzyme activity was significantly higher in the diabetic group and was significantly reduced by 4-AB administration. Diabetic animals had clear nephropathy indicated by proteinuria and increased albumin excretion rate (AER) which were significantly decreased by PARP inhibition. In addition, PARP inhibition increased creatinine clearance in diabetic animals and reduced renal TGF-β1 and glomerular fibrosis. Moreover, PARP inhibition alleviated the elevated serum TNF-α level, renal NFκB, nitrite, and the decrease in SOD activity in diabetic animals. However, PARP inhibition did not significantly affect neither hyperglycemia nor insulin sensitivity. PARP enzyme inhibition alleviates diabetic nephropathy through decreasing inflammation, oxidative stress, and renal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afsar B, Elsurer R (2012) Comparison of renal resistive index among patients with Type 2 diabetes with different levels of creatinine clearance and urinary albumin excretion. Diabet Med 29(8):1043–1046. doi:10.1111/j.1464-5491.2012.03593.x

    Article  CAS  PubMed  Google Scholar 

  • Arora MK, Singh UK (2013) Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vasc Pharmacol 58(4):259–271. doi:10.1016/j.vph.2013.01.001

    Article  CAS  Google Scholar 

  • Beneke S (2008) Poly(ADP-ribose) polymerase activity in different pathologies—the link to inflammation and infarction. Exp Gerontol 43(7):605–614. doi:10.1016/j.exger.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur E, Chen CC, Elkind MM (1985) Inhibitors of poly(adenosine diphosphoribose) synthetase, examination of metabolic perturbations, and enhancement of radiation response in Chinese hamster cells. Cancer Res 45(5):2123–2127

    CAS  PubMed  Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6(2):97–105. doi:10.1038/ncb1086

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  • Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5(3):314–319. doi:10.1038/6535

    Article  CAS  PubMed  Google Scholar 

  • Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295(5):E1269–E1276. doi:10.1152/ajpendo.90207.2008

    Article  CAS  PubMed  Google Scholar 

  • Cutroneo KR (2007) TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen 15(Suppl 1):S54–S60. doi:10.1111/j.1524-475X.2007.00226.x

    Article  PubMed  Google Scholar 

  • Dai S, McNeill JH (1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J Pharmacol Toxicol Methods 33(2):101–107. doi:10.1016/1056-8719(94)00063-A

    Article  CAS  PubMed  Google Scholar 

  • Drel VR, Xu W, Zhang J, Pavlov IA, Shevalye H, Slusher B, Obrosova IG (2009) Poly(adenosine 5'-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy. Endocrinology 150(12):5273–5283. doi:10.1210/en.2009-0628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, Slusher B, Obrosova IG (2011) Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 28(4):629–635. doi:10.3892/ijmm.2011.709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452. doi:10.1038/ncpendmet0894

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp WB, Zhang Z, Remuzzi G, Parving HH, Cooper ME, Keane WF, Shahinfar S, Gleim GW, Weir MR, Brenner BM, de Zeeuw D (2007) Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. J Am Soc Nephrol 18(5):1540–1546. doi:10.1681/ASN.2006050445

    Article  CAS  PubMed  Google Scholar 

  • El-Bassossy HM, Shaltout HA (2015) Allopurinol alleviates hypertension and proteinuria in high fructose, high salt and high fat induced model of metabolic syndrome. Transl Res 165(5):621–630. doi:10.1016/j.trsl.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • El-Bassossy HM, Watson ML (2015) Xanthine oxidase inhibition alleviates the cardiac complications of insulin resistance: effect on low grade inflammation and the angiotensin system. J Transl Med 13(1):82. doi:10.1186/s12967-015-0445-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M (2007) TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans 35(Pt 4):661–664. doi:10.1042/BST0350661

    Article  CAS  PubMed  Google Scholar 

  • Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280(47):39616–39626. doi:10.1074/jbc.M502412200

    Article  CAS  PubMed  Google Scholar 

  • Ha HC, Hester LD, Snyder SH (2002) Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci U S A 99(5):3270–3275. doi:10.1073/pnas.052712399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilig CW, Brosius FC 3rd, Cunningham C (2006) Role for GLUT1 in diabetic glomerulosclerosis. Expert Rev Mol Med 8(4):1–18. doi:10.1017/S1462399406010490

    Article  PubMed  Google Scholar 

  • Herceg Z, Wang ZQ (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 477(1–2):97–110. doi:10.1016/S0027-5107(01)00111-7

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Shikata K, Matsuda M, Akiyama K, Sugimoto H, Kushiro M, Makino H (1998) Increased expression of selectins in kidneys of patients with diabetic nephropathy. Diabetologia 41(2):185–192. doi:10.1007/s001250050888

    Article  CAS  PubMed  Google Scholar 

  • Khan TA, Ruel M, Bianchi C, Voisine P, Komjáti K, Szabo C, Sellke FW (2003) Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass. J Am Coll Surg 197(2):270–277. doi:10.1016/S1072-7515(03)00538-6

    Article  PubMed  Google Scholar 

  • Khanra R, Dewanjee S, D TK, Sahu R, Gangopadhyay M, De Feo V, Zia-Ul-Haq M (2015) Abroma Augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J Transl Med 13(1):6. doi:10.1186/s12967-014-0364-1

    Article  PubMed  PubMed Central  Google Scholar 

  • McCluskey JD, Sava D, Harbison SC, Muro-Cacho CA, Giffe JT, Ping X, Harbison RD (2011) Hepatoprotective effects of select water-soluble PARP inhibitors in a carbon tetrachloride model. Int J Crit Illn Inj Sci 1(2):97–103. doi:10.4103/2229-5151.84788

    Article  PubMed  PubMed Central  Google Scholar 

  • Minchenko AG, Stevens MJ, White L, Abatan OI, Komjati K, Pacher P, Szabó C, Obrosova IG (2003) Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 17(11):1514–1516. doi:10.1096/fj.03-0013fje

    CAS  PubMed  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034. doi:10.1101/cshperspect.a000034

    Article  PubMed  PubMed Central  Google Scholar 

  • Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ (2009) PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 47(1):13–26. doi:10.1016/j.freeradbiomed.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  • Ray SD, Balasubramanian G, Bagchi D, Reddy CS (2001) Ca(2+)-calmodulin antagonist chlorpromazine and poly(ADP-ribose) polymerase modulators 4-aminobenzamide and nicotinamide influence hepatic expression of BCL-XL and P53 and protect against acetaminophen-induced programmed and unprogrammed cell death in mice. Free Radic Biol Med 31(3):277–291. doi:10.1016/S0891-5849(01)00562-7

    Article  CAS  PubMed  Google Scholar 

  • Reusch JE (2003) Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? J Clin Invest 112(7):986–988. doi:10.1172/JCI19902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG (2010a) Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta 1802(11):1020–1027. doi:10.1016/j.bbadis.2010.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevalye H, Stavniichuk R, Xu W, Zhang J, Lupachyk S, Maksimchyk Y, Drel VR, Floyd EZ, Slusher B, Obrosova IG (2010b) Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochem Pharmacol 79(7):1007–1014. doi:10.1016/j.bcp.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  • Sun SF, Zhao TT, Zhang HJ, Huang XR, Zhang WK, Zhang L, Yan MH, Dong X, Wang H, Wen YM, Pan XP, Lan HY, Li P (2015) Renoprotective effect of berberine on type 2 diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 42(6):662–670. doi:10.1111/1440-1681.12402

    Article  CAS  PubMed  Google Scholar 

  • Szabo C, Biser A, Benko R, Böttinger E, Suszták K (2006a) Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 55(11):3004–3012. doi:10.2337/db06-0147

    Article  CAS  PubMed  Google Scholar 

  • Szabo C, Pacher P, Swanson RA (2006b) Novel modulators of poly(ADP-ribose) polymerase. Trends Pharmacol Sci 27(12):626–630. doi:10.1016/j.tips.2006.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tas Hekimoglu A, Toprak G, Akkoc H, Evliyaoglu O, Tas T, Kelle I, Colpan L (2014) Protective effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase in distant liver injury induced by renal ischemia-reperfusion in rats. Eur Rev Med Pharmacol Sci 18(1):34–38

    CAS  PubMed  Google Scholar 

  • Theiss AL, Simmons JG, Jobin C, Lund PK (2005) Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem 280(43):36099–36109. doi:10.1074/jbc.M505291200

    Article  CAS  PubMed  Google Scholar 

  • Thiemermann C, Bowes J, Myint FP, Vane JR (1997) Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci U S A 94(2):679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werth S, Lehnert H, Steinhoff J (2015) Diabetic nephropathy: current diagnostics and treatment. Internist (Berl) 56(5):513–519. doi:10.1007/s00108-014-3629-0

    Article  CAS  Google Scholar 

  • Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56(2):393–405. doi:10.1046/j.1523-1755.1999.00590.x

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Chiu J, Feng B, Chen S, Chakrabarti S (2008) PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 24(5):404–412. doi:10.1002/dmrr.842

    Article  CAS  PubMed  Google Scholar 

  • Ye DZ, Tai MH, Linning KD, Szabo C, Olson LK (2006) MafA expression and insulin promoter activity are induced by nicotinamide and related compounds in INS-1 pancreatic beta-cells. Diabetes 55(3):742–750. doi:10.2337/diabetes.55.03.06.db05-0653

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Liu YH, Liu FY, Peng YM, Tian JW (2014) Intraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats. Mol Med Rep 9(6):2293–3000. doi:10.3892/mmr.2014.2133

    CAS  PubMed  Google Scholar 

  • Zhu Y, Usui HK, Sharma K (2007) Regulation of transforming growth factor beta in diabetic nephropathy: implications for treatment. Semin Nephrol 27(2):153–160. doi:10.1016/j.semnephrol.2007.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by a research fund from the Egyptian Ministry for Higher Education Funding Agency; Science and Technology Development (STDF, www.stdf.org.eg), Fund ID 1024.

Authors’ contributions statement

EMZ carried out laboratory experiments, animal handling procedures, data and statistical analysis, collected field data, and participated in drafting the manuscript; HME-B raised the idea, designed the experiments, and participated in statistical analysis and revising the manuscript; NNE-M participated in the study conception, design, and coordination; AAA carried out histological examination; and AFA participated in study coordination. All authors gave final approval for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esraa M. Zakaria.

Ethics declarations

Funding

This work was funded by a research fund from the Egyptian Ministry for Higher Education Funding Agency; Science and Technology Development (STDF, www.stdf.org.eg), Fund ID 1024.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental procedures were performed in accordance with the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, E.M., El-Maraghy, N.N., Ahmed, A.F. et al. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis. Naunyn-Schmiedeberg's Arch Pharmacol 390, 621–631 (2017). https://doi.org/10.1007/s00210-017-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1360-9

Keywords

Navigation