Skip to main content

Advertisement

Log in

Selective venous vasodilator properties of the analgesic metamizole (dipyrone) in a human ex vivo model—implications for postoperative pain management

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Metamizole (dipyrone) is a first-line, non-opioid analgesic used for postoperative pain management. Clinical data and animal experiments indicate a possible vasodilator action of this drug. We investigated the effects of metamizole on human artery and vein tone in an ex vivo model to assess potential contributions to venous pooling. Excess segments of bypass grafts were harvested during coronary artery bypass grafting procedures. Tensions were measured in an organ bath for 120 min after adding metamizole to the preconstricted vessels. Contribution of endothelium was assessed in endothelium-denuded vessels, and indometacin was used to identify cyclooxygenase-mediated effects. Internal mammary arteries (n = 6) constricted after addition of 1, 3, and 10 μM metamizole and remained constricted at the lower doses. Transient constrictions also occurred in saphenous veins (n = 20), but veins relaxed below solvent controls after 20 min at all concentrations. Endothelium removal (n = 12) and cyclooxygenase inhibition (n = 12) suppressed the vasoconstrictor effect but not the vasodilator effect. Metamizole and its metabolites display counteracting effects on blood vessel tone ex vivo. The vasoconstrictor effect is mediated by cyclooxygenase-derived products. The net effect is site-specific, resulting in a selective venous vasodilator action. This may exacerbate unwanted venous pooling during postoperative pain therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avellaneda C, Gómez A, Martos F, Rubio M, Sarmiento J, de la Cuesta FS (2000) The effect of a single intravenous dose of metamizol 2 g, ketorolac 30 mg and propacetamol 1 g on haemodynamic parameters and postoperative pain after heart surgery. Eur J Anaesthesiol 17:85–90

    CAS  PubMed  Google Scholar 

  • Baumgartner CM, Koenighaus H, Ebner JK, Henke J, Schuster T, Erhardt WD (2009) Cardiovascular effects of dipyrone and propofol on hemodynamic function in rabbits. Am J Vet Res 70:1407–1415. doi:10.2460/ajvr.70.11.1407

    Article  CAS  PubMed  Google Scholar 

  • Bennett WM, Henrich WL, Stoff JS (1996) The renal effects of nonsteroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis 28:S56–S62

    Article  CAS  PubMed  Google Scholar 

  • Bonatti J, Dichtl W, Dworzak EA, Antretter H, Unger F, Puschendorf B, Dapunt OE (1998) Stimulated prostacyclin release by conduits used for coronary artery bypass grafting. Thorac Cardiovasc Surg 46:59–62. doi:10.1055/s-2007-1010190

    Article  CAS  PubMed  Google Scholar 

  • Derry S, Faura C, Edwards J, McQuay HJ, Moore RA (2010) Single dose dipyrone for acute postoperative pain. Cochrane Database Syst Rev:CD003227. doi:10.1002/14651858.CD003227.pub2

  • DIVS (Deutsche Interdisziplinäre Vereinigung für Schmerztherapie) (2009) S3-Leitlinie Behandlung akuter perioperativer und posttraumatischer Schmerzen. http://www.awmf.org/uploads/tx_szleitlinien/001-025l_S3_Behandlung_akuter_perioperativer_und_posttraumatischer_Schmerzen_abgelaufen.pdf

  • Dubash DD, Moore WE (1972) Preliminary studies on oxidative decomposition of dipyrone solutions. J Pharm Sci 61:386–389

    Article  CAS  PubMed  Google Scholar 

  • Eldor A, Polliack G, Vlodavsky I, Levy M (1983) Effects of dipyrone on prostaglandin production by human platelets and cultured bovine aortic endothelial cells. Thromb Haemost 49:132–137

    CAS  PubMed  Google Scholar 

  • Ergün H, Ayhan IH, Tulunay FC (1999) Pharmacological characterization of metamizol-induced relaxation in phenylephrine-precontracted rabbit thoracic aorta smooth muscle. Gen Pharmacol 33:237–241

    Article  PubMed  Google Scholar 

  • Ergün H, Frattarelli DAC, Aranda JV (2004) Characterization of the role of physicochemical factors on the hydrolysis of dipyrone. J Pharm Biomed Anal 35:479–487. doi:10.1016/j.jpba.2004.02.004

    Article  PubMed  Google Scholar 

  • Heinemeyer G, Gramm HJ, Simgen W, Dennhardt R, Roots I (1987) Kinetics of hexobarbital and dipyrone in critical care patients receiving high-dose pentobarbital. Eur J Clin Pharmacol 32:273–277

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Cheremina O, Bachmakov J, Renner B, Zolk O, Fromm MF, Brune K (2007) Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB J 21:2343–2351. doi:10.1096/fj.06-8061com

    Article  CAS  PubMed  Google Scholar 

  • Hoenicka M, Lehle K, Jacobs VR, Schmid FX, Birnbaum DE (2007) Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft. Tissue Eng 13:219–229. doi:10.1089/ten.2006.0121

    Article  CAS  PubMed  Google Scholar 

  • Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332:1302–1308. doi:10.1136/bmj.332.7553.1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Zylber-Katz E, Rosenkranz B (1995) Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet 28:216–234. doi:10.2165/00003088-199528030-00004

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11:323–344

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2002) Mixed-effects models in S and S-PLUS. Springer-Verlag, New York

    Google Scholar 

  • Pogatzki-Zahn E, Chandrasena C, Schug SA (2014) Nonopioid analgesics for postoperative pain management. Curr Opin Anaesthesiol 27:513–519. doi:10.1097/ACO.0000000000000113

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rogosch T, Sinning C, Podlewski A et al (2012) Novel bioactive metabolites of dipyrone (metamizol). Bioorg Med Chem 20:101–107. doi:10.1016/j.bmc.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  • Schjerning Olsen A, Fosbøl EL, Lindhardsen J et al (2011) Duration of treatment with nonsteroidal anti-inflammatory drugs and impact on risk of death and recurrent myocardial infarction in patients with prior myocardial infarction: a nationwide cohort study. Circulation 123:2226–2235. doi:10.1161/CIRCULATIONAHA.110.004671

    Article  CAS  PubMed  Google Scholar 

  • Souki MA (2016) Metamizole for postoperative pain therapy. Eur J Anaesthesiol 33:785–786. doi:10.1097/EJA.0000000000000498

    Article  PubMed  Google Scholar 

  • Thatcher GRJ, Nicolescu AC, Bennett BM, Toader V (2004) Nitrates and NO release: contemporary aspects in biological and medicinal chemistry. Free Radic Biol Med 37:1122–1143. doi:10.1016/j.freeradbiomed.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  • Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger M, Jüni P (2011) Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ 342:c7086

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenzuela F, García-Saisó S, Lemini C, Ramírez-Solares R, Vidrio H, Mendoza-Fernández V (2005) Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle. Vasc Pharmacol 43:120–127. doi:10.1016/j.vph.2005.05.003

    Article  CAS  Google Scholar 

  • Volz M, Kellner HM (1980) Kinetics and metabolism of pyrazolones (propyphenazone, aminopyrine and dipyrone). Br J Clin Pharmacol 10(Suppl 2):299S–308S

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoppi M, Hoigné R, Keller MF, Streit F, Hess T (1983) Reducing blood pressure with Dipyron (novaminsulfone sodium). Schweiz Med Wochenschr 113:1768–1770

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the expert technical assistance of S. Bergmann and E. Nagel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hoenicka.

Ethics declarations

The study was approved by the Ethics Committee of University of Ulm, Germany (300/11) and was conducted in accordance with the Declaration of Helsinki.

Disclosures

The authors declare that they have no conflicts of interests.

Additional information

This article is dedicated to the memory of the late Dietrich E. Birnbaum (February 16, 1942–January 2, 2017), cardiac surgeon, humanitarian worker, and mentor of A.L. and of M.H.

Preliminary data of this project were reported as an oral presentation at the 44th German Society for Thoracic and Cardiovascular Surgery (DGHTG) Annual Meeting in Freiburg, Germany, February 2015.

Electronic supplementary material

ESM 1

(PDF 1752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoenicka, M., Gorki, H., Traeger, K. et al. Selective venous vasodilator properties of the analgesic metamizole (dipyrone) in a human ex vivo model—implications for postoperative pain management. Naunyn-Schmiedeberg's Arch Pharmacol 390, 519–526 (2017). https://doi.org/10.1007/s00210-017-1347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1347-6

Keywords

Navigation