Skip to main content
Log in

cUMP hydrolysis by PDE3A

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

As previously reported, the cardiac phosphodiesterase PDE3A hydrolyzes cUMP. Moreover, cUMP-degrading activity was detected in cow and dog hearts several decades ago. Our aim was to characterize the enzyme kinetic parameters of PDE3A-mediated cUMP hydrolysis and to investigate whether cUMP and cUMP-hydrolyzing PDEs are present in cardiomyocytes. PDE3A-mediated cUMP hydrolysis was characterized in time course, inhibitor, and Michaelis-Menten kinetics experiments. Intracellular cyclic nucleotide (cNMP) concentrations and the mRNAs of cUMP-degrading PDEs were quantitated in neonatal rat cardiomyocytes (NRCMs) and murine HL-1 cardiomyogenic cells. Moreover, we investigated cUMP degradation in HL-1 cell homogenates and intact cells. Educts (cNMPs) and products (NMPs) of the PDE reactions were detected by HPLC-coupled tandem mass spectrometry. PDE3A degraded cUMP (measurement of UMP formation) with a K M value of ~143 μM and a V max value of ~42 μmol/min/mg. PDE3A hydrolyzed cAMP with a K M value of ~0.7 μM and a V max of ~1.2 μmol/min/mg (determination of AMP formation). The PDE3 inhibitor milrinone inhibited cUMP hydrolysis (determination of UMP formation) by PDE3A (K i = 57 nM). Significant amounts of cUMP as well as of PDE3A mRNA (in addition to PDE3B and PDE9A transcripts) were detected in HL-1 cells and NRCMs. Although HL-1 cell homogenates contain a milrinone-sensitive cUMP-hydrolyzing activity, intact HL-1 cells may use additional PDE3-independent mechanisms for cUMP disposal. PDE3A is a low-affinity and high-velocity PDE for cUMP. Future studies should investigate biological effects of cUMP in cardiomyocytes and the role of PDE3A in detoxifying high intracellular cUMP concentrations under pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

We thank Prof. Dr. Ralf Gerhard (Institute of Toxicology, MHH) and Dr. Sabine Wolter (Institute of Pharmacology, MHH) for excellent scientific discussions as well as Ms. Annette Garbe (Research Core Unit Metabolomics, MHH) and Ms. Martina Kasten (Molecular Cardiology Research Group, Department of Cardiology and Angiology, MHH) for outstanding technical support. Moreover, we thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich H. Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrisch, S., Ostermeyer, J., Kaever, V. et al. cUMP hydrolysis by PDE3A. Naunyn-Schmiedeberg's Arch Pharmacol 390, 269–280 (2017). https://doi.org/10.1007/s00210-016-1328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1328-1

Keywords

Navigation