Skip to main content

Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart

  • Chapter
  • First Online:
Microdomains in the Cardiovascular System

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 3))

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cAMP and cGMP, thereby regulating multiple aspects of cardiac function. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families which are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP controlling specific cell functions in response to various neurohormonal stimuli. In myocardium, the PDE3 and PDE4 families are predominant to degrade cAMP and thereby regulate cardiac excitation-contraction coupling. PDE3 inhibitors are positive inotropes and vasodilators in human, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important to degrade cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. However, these drugs do not seem efficient in heart failure with preserved ejection fraction. There is experimental evidence that these PDEs as well as other PDE families including PDE1, PDE2 and PDE9 may play important roles in cardiac diseases such as hypertrophy and heart failure. After a brief presentation of the cyclic nucleotide pathways in cardiac cells and the major characteristics of the PDE superfamily, this chapter will present their role in cyclic nucleotide compartmentation and the current use of PDE inhibitors in cardiac diseases together with the recent research progresses that could lead to a better exploitation of the therapeutic potential of these enzymes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Adenylyl cyclases

AKAP:

A-kinase anchoring protein

ANP:

Atrial natriuretic peptide

BNP:

Brain natriuretic peptide

CaM:

Calmodulin

CaMKII:

Ca2+/calmodulin-dependent kinase II

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CN:

Cyclic nucleotides

CNP:

C-type natriuretic peptide

ECC:

Excitation-contraction coupling

Epac:

Exchange protein directly activated by cAMP

ERK:

Extracellular signal-regulated kinase

FRET:

Förster resonance energy transfer

GAF:

cGMP-stimulated phosphodiesterases, Anabaena adenylyl cyclases, Fhla transcription factor

GC:

Guanylyl cyclase

HF:

Heart failure

ICER:

Inducible-cAMP early repressor

I/R:

Ischemia/reperfusion

KO:

Knockout

LTCC:

L-type Ca2+ channels

mAKAP:

Muscle AKAP

NO:

Nitric oxide

NOS:

NO synthase

PDE:

Cyclic nucleotide phosphodiesterase

pGC:

Particulate guanylyl cyclase

PGE:

Prostaglandin

PI3Kγ:

Phosphoinositide 3-kinase, γ isoform

PKA:

cAMP-dependent protein kinase

PKG:

cGMP-dependent protein kinase

PLB:

Phospholamban

RyR2:

Ryanodine receptor type 2

SERCA:

Sarco-endoplasmic reticulum Ca2+-ATPase

sGC:

Soluble guanylyl cyclase

SR:

Sarcoplasmic reticulum

TnI:

Troponin I

β-ARs:

β-adrenergic receptors

References

  • Abi-Gerges A, Richter W, Lefebvre F et al (2009) Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on ß-adrenergic cAMP signals. Circ Res 105:784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad F, Shen W, Vandeput F et al (2015) Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 290:6763–6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacskai BJ, Hochner B, Mahaut-Smith M et al (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–226

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Sood A, McPhee I et al (2003) β-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100:941–945

    Article  CAS  Google Scholar 

  • Beca S, Ahmad F, Shen W et al (2013) PDE3A regulates basal myocardial contractility through interacting with SERCA2a-signaling complexes in mouse heart. Circ Res 112:289–297

    Article  CAS  PubMed  Google Scholar 

  • Beca S, Helli PB, Simpson JA et al (2011) Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res 109:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthouze-Duquesnes M, Lucas A, Sauliere A et al (2013) Specific interactions between Epac1, beta-arrestin2 and PDE4D5 regulate beta-adrenergic receptor subtypes differential effects on cardiac hypertrophic signaling. Cell Signal 25:970–980

    Article  CAS  PubMed  Google Scholar 

  • Bethke T, Eschenhagen T, Klimkiewicz A et al (1992) Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittelforschung 42:437–445

    CAS  PubMed  Google Scholar 

  • Bobin P, Varin A, Lefebvre F, Fischmeister R, Vandecasteele G, Leroy J (2016) Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc Res 110:151–161

    Article  CAS  PubMed  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J et al (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70

    Article  CAS  PubMed  Google Scholar 

  • Buxton ILO, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258:10233–10239

    Article  CAS  PubMed  Google Scholar 

  • Castro LR, Verde I, Cooper DMF, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Nakamura T, Koutalos Y (1999) Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys J 76:2861–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung YW, Lagranha C, Chen Y et al (2015) Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A 112:E2253–E2262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Beavo JA (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Mika D, Richter W (2014) Perspectives on: cyclic nucleotide microdomains and signaling specificity: cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252:3854–3861

    Article  CAS  PubMed  Google Scholar 

  • Das A, Durrant D, Salloum FN, Xi L, Kukreja RC (2015) PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 147:12–21

    Article  CAS  PubMed  Google Scholar 

  • De Arcangelis V, Liu R, Soto D, Xiang Y (2009) Differential association of phosphodiesterase 4D isoforms with ß2-adrenoceptor in cardiac myocytes. J Biol Chem 284:33824–33832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degen CV, Bishu K, Zakeri R, Ogut O, Redfield MM, Brozovich FV (2015) The Emperor’s new clothes: PDE5 and the heart. PLoS One 10:e0118664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Abe J, Wei H et al (2005) A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc Natl Acad Sci U S A 102:14771–14776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 301:H1742–H1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge-Kafka KL, Langeberg L, Scott JD (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins. Circ Res 98:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC et al (2005) The protein kinase A anchoring protein mAKAP co-ordinates two integrated cAMP effector pathways. Nature 437:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS et al (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302:C839–C852

    Article  CAS  PubMed  Google Scholar 

  • Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G (2005) Species-and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol A Mol Integr Physiol 142:136–143

    Article  PubMed  CAS  Google Scholar 

  • Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3′,5′-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387:453–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox D 3rd, Burgin AB, Gurney ME (2014) Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal 26:657–663

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa M, Nishida H, Sato T, Miyazaki M, Nakaya H (2008) 6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (cilostazol), a phosphodiesterase type 3 inhibitor, reduces infarct size via activation of mitochondrial Ca2+-activated K+ channels in rabbit hearts. J Pharmacol Exp Ther 326:100–104

    Article  CAS  PubMed  Google Scholar 

  • Ghigo A, Perino A, Mehel H et al (2012) PI3KY protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation 126:2073–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannetta E, Isidori AM, Galea N et al (2012) Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125:2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Gotz K, Sprenger J, Perera RK et al (2014) Transgenic mice for real time visualization of cGMP in intact adult cardiomyocytes. Circ Res 114:1235–1245

    Article  PubMed  CAS  Google Scholar 

  • Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4:8–17

    Article  CAS  PubMed  Google Scholar 

  • Haj Slimane Z, Bedioune I, Lechêne P et al (2014) Control of cytoplasmic and nuclear protein kinase A activity by phosphodiesterases and phosphatases in cardiac myocytes. Cardiovasc Res 102:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartzell HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275

    Article  CAS  PubMed  Google Scholar 

  • Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255:5113–5119

    Article  CAS  PubMed  Google Scholar 

  • Heinzel FR, Bito V, Volders PG, Antoons G, Mubagwa K, Sipido KR (2002) Spatial and temporal inhomogeneities during Ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circ Res 91:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by ß-adrenergic agonists. Proc Natl Acad Sci U S A 93:295–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165:1288–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy S, Moorthy BS, Xin Xiang L et al (2014) Active site coupling in PDE:PkA complexes promotes resetting of mammalian cAMP signaling. Biophys J 107:1426–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12–21

    Article  CAS  PubMed  Google Scholar 

  • Lee DI, Zhu G, Sasaki T et al (2015) Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnart SE, Wehrens XHT, Reiken S et al (2005) Phosphodiesterase 4D deficiency in the ryanodine receptor complex promotes heart failure and arrhythmias. Cell 123:23–35

    Article  CAS  Google Scholar 

  • Leroy J, Abi-Gerges A, Nikolaev VO et al (2008) Spatiotemporal dynamics of ß-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 102:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Richter W, Mika D et al (2011) Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias. J Clin Investig 121:2651–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis GD, Lachmann J, Camuso J et al (2007) Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115:59–66

    Article  CAS  PubMed  Google Scholar 

  • Lezoualc’h F, Fazal L, Laudette M, Conte C (2016) Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res 118:881–897

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Li Y, Kim S et al (2012) Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proc Natl Acad Sci U S A 109:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of ß-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  CAS  PubMed  Google Scholar 

  • Louch WE, Hake J, Jolle GF et al (2010) Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes. Biophys J 99:1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F (2014) Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci 35:404–413

    Article  CAS  PubMed  Google Scholar 

  • Martin TP, Hortigon-Vinagre MP, Findlay JE, Elliott C, Currie S, Baillie GS (2014) Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio 4:923–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins TJ, Mimby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257:1973–1979

    Article  CAS  PubMed  Google Scholar 

  • Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehel H, Emons J, Vettel C et al (2013) Phoshodiesterase-2 is upregulated in human failing hearts and blunts ß-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 62:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Méry P-F, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88:1197–1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Mika D, Richter W, Conti M (2015) A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci U S A 112:2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mika D, Richter W, Westenbroek RE, Catterall WA, Conti M (2014) PDE4B mediates local feedback regulation of β1-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci 127:1033–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL, Oikawa M, Cai Y et al (2009) Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 105:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokni W, Keravis T, Etienne-Selloum N et al (2010) Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 5:e14227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenaar P, Christ T, Hussain RI et al (2013) Phosphodiesterase PDE3, but not PDE4, reduces ß1- and ß2-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br J Pharmacol 169:528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina CE, Johnson DM, Mehel H et al (2014) Interventricular differences in ß-adrenergic responses in the canine heart: role of phosphodiesterases. J Am Heart Assoc 3:e000858. Doi:10.1161/JAHA.114.000858

  • Molina CE, Leroy J, Xie M et al (2012) Cyclic AMP phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 59:2182–2190

    Article  CAS  PubMed  Google Scholar 

  • Mongillo M, McSorley T, Evellin S et al (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95:65–75

    Article  CAS  Google Scholar 

  • Mongillo M, Terrin A, Evellin S, Lissandron V, Zaccolo M (2005) Study of cyclic adenosine monophosphate microdomains in cells. Methods Mol Biol 307:1–13

    CAS  PubMed  Google Scholar 

  • Movsesian M (2015) New pharmacologic interventions to increase cardiac contractility: challenges and opportunities. Curr Opin Cardiol 30(3):285–291

    Article  PubMed  Google Scholar 

  • Movsesian M, Wever-Pinzon O, Vandeput F (2011) PDE3 inhibition in dilated cardiomyopathy. Curr Opin Pharmacol 11(6):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006a) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching ß1-adrenergic but locally confined ß2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Gambaryan S, Engelhardt S, Walter U, Lohse MJ (2005) Real-time monitoring of live cell’s PDE2 activity: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280:1716–1719

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Gambaryan S, Lohse MJ (2006b) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR et al (2010) ß2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    Article  CAS  PubMed  Google Scholar 

  • Oikawa M, Wu M, Lim S et al (2013) Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 64:11–19

    Article  CAS  PubMed  Google Scholar 

  • Osadchii OE (2007) Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 21:171–194

    Article  CAS  PubMed  Google Scholar 

  • Packer M, Carver JR, Rodeheffer RJ et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325:1468–1475

    Article  CAS  PubMed  Google Scholar 

  • Perera RK, Sprenger JU, Steinbrecher JH et al (2015) Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of beta-adrenoceptor-stimulated contractility in early cardiac hypertrophy. Circ Res 116:1304–1311

    Article  CAS  PubMed  Google Scholar 

  • Pokreisz P, Vandenwijngaert S, Bito V et al (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampersad SN, Ovens JD, Houston E et al (2010) Cyclic AMP phosphodiesterase 4D (PDE4D) tethers EPAC1 in a VE-cadherin (VECAD)-based signaling complex and controls cAMP-mediated vascular permeability. J Biol Chem 285:33614–33622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfield MM, Chen HH, Borlaug BA et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277

    Article  CAS  PubMed  Google Scholar 

  • Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci U S A 98:13049–13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards M, Lomas O, Jalink K et al (2016) Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 110:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter W, Day P, Agraval R et al (2008) Signaling from ß1-and ß2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27:384–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter W, Mika D, Blanchard E, Day P, Conti M (2013) ß1-adrenergic receptor antagonists signal via PDE4 translocation. EMBO Rep 14:276–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochais F, Abi-Gerges A, Horner K et al (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98:1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochais F, Vandecasteele G, Lefebvre F et al (2004) Negative feedback exerted by PKA and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes. An in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279:52095–52105

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Hurtado G, Dominguez-Rodriguez A, Pereira L et al (2012) Sustained Epac activation induces calmodulin dependent positive inotropic effect in adult cardiomyocytes. J Mol Cell Cardiol 53:617–625

    Article  CAS  PubMed  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanada S, Kitakaze M, Papst PJ et al (2001) Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors -the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 104:705–710

    Article  CAS  PubMed  Google Scholar 

  • Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Perspectives on: cyclic nucleotide microdomains and signaling specificity: mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saucerman JJ, Zhang J, Martin JC et al (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103:12923–12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler RF, Brand T (2016) The Popeye domain containing protein family—a novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol 120:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz JE, Dunkern T, Gawlitta-Gorka E, Sorg G (2011) The GAF-tandem domain of phosphodiesterase 5 as a potential drug target. Handb Exp Pharmacol:151–166

    Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase -involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534

    Article  CAS  PubMed  Google Scholar 

  • Shakur Y, Fong M, Hensley J et al (2002) Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity, intracellular cAMP and calcium in the heart. Cardiovasc Drugs Ther 16:417–427

    Article  CAS  PubMed  Google Scholar 

  • Sin YY, Edwards HV, Li X et al (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50:872–883

    Article  CAS  PubMed  Google Scholar 

  • Smith FD, Reichow SL, Esseltine JL et al (2013) Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. Elife 2:e01319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sprenger JU, Perera RK, Steinbrecher JH et al (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Li H, Shakur Y et al (2007) Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal 19:1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Belardi D, Tocchetti CG et al (2007) Compartmentalization of cardiac ß-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115:2159–2167

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Champion HC, Li M et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    Article  CAS  PubMed  Google Scholar 

  • Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284:9140–9146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrin A, Di Benedetto G, Pertegato V et al (2006) PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosaka S, Makita T, Tosaka R et al (2007) Cardioprotection induced by olprinone, a phosphodiesterase III inhibitor, involves phosphatidylinositol-3-OH kinase-Akt and a mitochondrial permeability transition pore during early reperfusion. J Anesth 21:176–180

    Article  PubMed  Google Scholar 

  • Tsai EJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeput F, Wolda SL, Krall J et al (2007) Cyclic nucleotide phosphodiesterase PDE1C in human cardiac myocytes. J Biol Chem 282:32749–32757

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Pahlke G, Salanova M et al (2001) Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276:11189–11198

    Article  CAS  PubMed  Google Scholar 

  • Vettel C, Lindner M, Dewenter M et al. (2016) Phosphodiesterase 2 protects against catecholamine-induced arrhythmias and preserves contractile function after myocardial infarction. Circ Res (in press)

    Google Scholar 

  • Wagner M, Mehel H, Fischmeister R, El-Armouche A (2016) Phosphodiesterase 2: anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg’s Arch Pharmacol 389(11):1139–1141

    Article  CAS  Google Scholar 

  • Wechsler J, Choi YH, Krall J, Ahmad F, Manganiello VC, Movsesian MA (2002) Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 277:38072–38078

    Article  CAS  PubMed  Google Scholar 

  • Wilson LS, Baillie GS, Pritchard LM et al (2011) A phosphodiesterase 3B-based signaling complex integrates exchange protein activated by cAMP 1 and phosphatidylinositol 3-kinase signals in human arterial endothelial cells. J Biol Chem 286:16285–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Naro F, Zoudilova M, Jin SL, Conti M, Kobilka B (2005) Phosphodiesterase 4D is required for ß2 adrenoceptor subtype-specific signaling in cardiac myocytes. Proc Natl Acad Sci U S A 102:909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Miller CL, Abe J (2007) Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res 100:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101:465–474

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato A, Fields LH, Zaccolo M (2016) Response to Wagner et al.: phosphodiesterase-2-anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg’s Arch Pharmacol:1143–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoccarato A, Surdo NC, Aronsen JM et al (2015) Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 117:707–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondation de France (to GV) and the Agence Nationale de la Recherche 2010 BLAN 1139-01 (to GV). PB and IB were supported by PhD fellowships from the region Ile-de-France (CORDDIM) and Fondation pour la Recherche Médicale.

Compliance with Ethical Standards

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodolphe Fischmeister or Grégoire Vandecasteele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bedioune, I., Bobin, P., Leroy, J., Fischmeister, R., Vandecasteele, G. (2017). Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. In: Nikolaev, V., Zaccolo, M. (eds) Microdomains in the Cardiovascular System. Cardiac and Vascular Biology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-54579-0_6

Download citation

Publish with us

Policies and ethics