Skip to main content

Advertisement

Log in

Enhancement of pharmacological effects of uricosuric agents by concomitant treatment with pyrazinamide in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Our goal was to establish a model for the evaluation of the effects of uricosuric agents and to clarify the underlying mechanism(s). The effects of a uricosuric agent co-treated with pyrazinamide, an anti-tubercular agent, on urate handling were examined in rats. Furthermore, the effects of uricosuric agents on urate uptake were evaluated using the vesicles of rat renal brush-border membrane. Treatment with probenecid, at a dose of 100 mg/kg, significantly increased the urinary urate to creatinine ratio (UUA/UCRE) in pyrazinamide-treated rats although the same treatment did not produce any uricosuric effects in intact rats. In this model, the urinary excretion of pyrazinecarboxylic acid (PZA), an active metabolite of pyrazinamide, was decreased by probenecid and indicated an inverse correlation between urinary excretion of urate and PZA. Furthermore, in the examination using FYU-981, a potent uricosuric agent, a more than 10-fold leftward shift of the dose–response relationship of the uricosuric effect was observed in pyrazinamide-treated rats when compared with intact rats. In the in vitro study, the treatment of the vesicles of rat renal brush-border membrane with PZA produced an increased urate uptake, which was inhibited by uricosuric agents. The pyrazinamide-treated model used in the present study seems to be valuable for the evaluation of uricosurics because of its higher sensitivity to these drugs when compared to intact rats, and this is probably due to the enhanced urate reabsorption accompanied with trans-stimulated PZA transport at the renal brush-border membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

FEUA :

Fractional excretion of urate

HPLC:

High-performance liquid chromatography

MC:

Methylcellulose

PUA :

Plasma urate level

PZA:

Pyrazinecarboxylic acid

UUA :

Urinary urate level

UCRE :

Urinary creatinine level

References

  • Abramson RG, Levitt MF (1975) Micropuncture study of uric acid transport in rat kidney. Am J Phys 228:1597–1605

    CAS  Google Scholar 

  • Agabiti-Rosei E, Grassi G (2013) Beyond gout: uric acid and cardiovascular diseases. Curr Med Res Opin 29(Suppl 3):33–39

    Article  CAS  PubMed  Google Scholar 

  • Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, Srivastava S, Kitamura K, Hisatome I, Endou H, Sakurai H (2008) Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 283:26834–26838

    Article  CAS  PubMed  Google Scholar 

  • Biber J, Stieger B, Haase W, Murer H (1981) A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta 647:169–176

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Atkinson K, Karlson EW, Curhan G (2005) Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the Health Professionals’ Follow-up Study. Arch Intern Med 165:742–748

    Article  PubMed  Google Scholar 

  • Choi JW, Ford ES, Gao X, Choi HK (2008) Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 59:109–116

    Article  CAS  PubMed  Google Scholar 

  • Dan T, Koga H, Onuma E, Tanaka H, Sato H, Aoki B (1989) The activity of AA-193, a new uricosuric agent, in animals. Adv Exp Med Biol 253A:301–308

    Article  CAS  PubMed  Google Scholar 

  • Dan T, Tanaka H, Koga H (1990) Mechanism of uricosuric action of AA-193 in DBA/2 N mice. J Pharmacol Exp Ther 253:437–443

    CAS  PubMed  Google Scholar 

  • Desideri G, Castaldo G, Lombardi A, Mussap M, Testa A, Pontremoli R, Punzi L, Borghi C (2014) Is it time to revise the normal range of serum uric acid levels? Eur Rev Med Pharmacol Sci 18:1295–1306

    CAS  PubMed  Google Scholar 

  • Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, Rechavi G, Amariglio N, Ganon L, Sela BA, Bahat H, Goldman M, Weissgarten J, Milar MR, Wright AF, Holtzman EJ (2010) Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 21:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty M, Jansen TL, Nuki G, Pascual E, Perez-Ruiz F, Punzi L, So AK, Bardin T (2012) Gout: why is this curable disease so seldom cured? Ann Rheum Dis 71:1765–1770

    Article  PubMed  Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  PubMed  Google Scholar 

  • Frankfurt SJ, Weinman EJ (1978) Pyrazinoic acid and urate transport in the rat. Proc Soc Exp Biol Med 159:16–20

    Article  CAS  PubMed  Google Scholar 

  • Gerdan V, Akkoc N, Ucan ES, Bulac Kir S (2013) Paradoxical increase in uric acid level with allopurinol use in pyrazinamide-induced hyperuricemia. Singap Med J 54:e125–e126

    Article  Google Scholar 

  • Guggino SE, Aronson PS (1985) Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. J Clin Invest 76:543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, Endou H (2003) Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int 63:143–155

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga T, Sato M, Maeda T, Ogihara T, Tamai I (2007) Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J Pharmacol Exp Ther 320:211–217

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Koga H, Yasutomo Y, Kawabata Y, Shimizu E, Naruse M, Kiyama S, Nonoguchi H, Tomita K, Sasatomi Y, Takebayashi S (2000) Patients with renal hypouricemia with exercise-induced acute renal failure and chronic renal dysfunction. Clin Nephrol 53:467–472

    CAS  PubMed  Google Scholar 

  • Lacroix C, Guyonnaud C, Chaou M, Duwoos H, Lafont O (1988) Interaction between allopurinol and pyrazinamide. Eur Respir J 1:807–811

    CAS  PubMed  Google Scholar 

  • Leal-Pinto E, Cohen BE, Lipkowitz MS, Abramson RG (2002) Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am J Physiol Renal Physiol 283:F150–F163

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Graham GG, Williams KM, Day RO (2008) A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf 31:643–665

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Okamoto K, Ashizawa N, Nishino T (2011) FYX-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J Pharmacol Exp Ther 336:95–103

    Article  CAS  PubMed  Google Scholar 

  • Miner J, Tan PK, Hyndman D, Liu S, Iverson C, Nanavati P, Hagerty DT, Manhard K, Shen Z, Girardet JL, Yeh LT, Terkeltaub R, Quart B (2016) Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther 18:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Richette P, Clerson P, Périssin L, Flipo RM, Bardin T (2015) Revisiting comorbidities in gout: a cluster analysis. Ann Rheum Dis 74:142–147

    Article  PubMed  Google Scholar 

  • Roch-Ramel F, Guisan B, Diezi J (1997) Effects of uricosuric and antiuricosuric agents on urate transport in human brush-border membrane vesicles. J Pharmacol Exp Ther 280:839–845

    CAS  PubMed  Google Scholar 

  • Rose RC, Bode AM (1995) Analysis of water-soluble antioxidants by high-pressure liquid chromatography. Biochem J 306:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruilope LM, Pontremoli R (2013) Serum uric acid and cardio-renal diseases. Curr Med Res Opin 29(Suppl 3):25–31

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tatsumi K, Nishino T (1991) A novel xanthine dehydrogenase inhibitor (BOF-4272). Adv Exp Med Biol 309A:135–138

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Ashizawa N, Moto M, Matsumoto K, Iwanaga T, Nagata O (2009) FYX-051, a xanthine oxidoreductase inhibitor, induces nephropathy in rats, but not in monkeys. Toxicol Pathol 37:438–445

    Article  CAS  PubMed  Google Scholar 

  • Takagi K, Nakamura T, Ueda T (2008) Physiology and dynamics of uric acid in hyperuricemia. in Japanese Nihon Rinsho 66:669–674

    PubMed  Google Scholar 

  • Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H (2001) Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 419:113–120

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Ashizawa N, Matsumoto K, Iwanaga T, Saitoh K (2016) Uricosuric agents decrease the plasma urate level in rats by concomitant treatment with topiroxostat, a novel xanthine oxidoreductase inhibitor. J Pharm Pharmacol 68:76–83

    Article  CAS  PubMed  Google Scholar 

  • Terkeltaub R, Bushinsky DA, Becker MA (2006) Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 8(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Uji Y, Kashiwazaki S, Dan T, Sakai M, Fukazawa N, Orikasa Y, Kamiyama H, Okazaki A (1994) Phase I study of AA-193 in healthy volunteers. in Japanese J Clin Ther Med 10:1057–1076

    Google Scholar 

  • Yamada H, Kotaki H, Furitsu H, Sawada Y, Iga T (1999) Mechanism of the uricosuric action of E3040, a drug used to treat inflammatory bowel disease II: study using DBA/2 N mice. Bipharm Drug Dispos 20:271–276

    Article  CAS  Google Scholar 

  • Yamanaka H et al (2010) Guideline for the management of hyperuricemia and gout, 2nd edn in Japanese. Medical Review, Osaka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Taniguchi.

Ethics declarations

Funding

This research was supported by Fuji Yakuhin Co., Ltd.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animal were in accordance with the ethical standards of the Animal Care and Utilization Guidelines of Fuji Yakuhin Research Laboratories.

Electronic supplementary material

ESM 1

(DOC 27 kb)

Fig. S1.

Pharmacokinetics of pyrazinamide and PZA after administration of pyrazinamide to rats. Data are represented as the mean + standard deviation (n = 3) (GIF 6 kb)

High Resolution Image (TIFF 26 kb)

Fig. S2.

Pharmacokinetics of urinary FYU-981 (a) or probenecid (b) to creatinine ratio in pyrazinamide-treated rats. Experiment was performed according to the protocol C in Fig. 1. Data are represented as the mean + standard deviation (n = 4) (GIF 12 kb)

High Resolution Image (TIFF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, T., Ashizawa, N., Matsumoto, K. et al. Enhancement of pharmacological effects of uricosuric agents by concomitant treatment with pyrazinamide in rats. Naunyn-Schmiedeberg's Arch Pharmacol 390, 253–260 (2017). https://doi.org/10.1007/s00210-016-1324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1324-5

Keywords

Navigation