Skip to main content
Log in

(−)-α-Bisabolol reduces orofacial nociceptive behavior in rodents

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The purposes of this study were to evaluate the anti-nociceptive effect of oral and topical administration of (−)-α-bisabolol (BISA) in rodent models of formalin- or cinnamaldehyde-induced orofacial pain and to explore the inhibitory mechanisms involved. Orofacial pain was induced by injecting 1.5% formalin into the upper lip of mice (20 μL) or into the temporomandibular joint (TMJ) of rats (50 μL). In another experiment, orofacial pain was induced with cinnamaldehyde (13.2 μg/lip). Nociceptive behavior was proxied by time (s) spent rubbing the injected area and by the incidence of head flinching. BISA (100, 200, or 400 mg/kg p.o. or 50, 100, or 200 mg/mL topical) or vehicle was administered 60 min before pain induction. The two formulations (lotion and syrup) were compared with regard to efficacy. The effect of BISA remained after incorporation into the formulations, and nociceptive behavior decreased significantly in all tests. The high binding affinity observed for BISA and TRPA1 in the molecular docking study was supported by in vivo experiments in which HC-030031 (a TRPA1 receptor antagonist) attenuated pain in a manner qualitatively and quantitatively similar to that of BISA. Blockers of opioid receptors, NO synthesis, and K+ ATP channels did not affect orofacial pain, nor inhibit the effect of BISA. In conclusion, BISA had a significant anti-nociceptive effect on orofacial pain. The effect may in part be due to TRPA1 antagonism. The fact that the effect of BISA remained after incorporation into oral and topical formulations suggests that the compound may be a useful adjuvant in the treatment of orofacial pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal VR, McBeth J, Zakrzewska JM, Lunt M, Macfarlane GJ (2006) The epidemiology of chronic syndromes that are frequently unexplained: do they have common associated factors? Int J Epidemiol 35:468–476

    Article  PubMed  Google Scholar 

  • Andre D, Verite P, Duclos R, Orecchioni AM, Failly F (1991) Determination of alpha-bisabolol and d-panthenol in cosmetic products by gas chromatography. Int J Cosmet Sci 13:137–142

    Article  CAS  PubMed  Google Scholar 

  • Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704:15–22

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    Article  CAS  PubMed  Google Scholar 

  • Barreto RS, Quintans JS, Amarante RK, Nascimento TS, Amarante RS, Barreto AS, Pereira EW, Duarte MC, Coutinho HD, Menezes IR, Zengin G, Aktumsek A, Quintans-Júnior LJ (2016) Evidence for the involvement of TNF-α and IL-1β in the antinociceptive and anti-inflammatory activity of Stachys lavandulifolia Vahl. (Lamiaceae) essential oil and (−)-α-bisabolol, its main compound, in mice. J Ethnopharmacol 191:9–18

  • Bezerra SB, Leal LKAM, Nogueira NAP, Campos AR (2009) Bisabolol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide, and K+ ATP channels. J Med Food 12:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS, Api AM (2008) Fragrance material review on α-bisabolol. Food Chem Toxicol 46:S72–S76

    Article  CAS  PubMed  Google Scholar 

  • Braga PC, Dal Sasso M, Fonti E, Culici M (2009) Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 83:110–115

    Article  CAS  PubMed  Google Scholar 

  • Brito RG, Santos PL, Prado DS, Santana MT, Araújo AA, Bonjardim LR, Santos MR, de Lucca JW, Oliveira AP, Quintans-Júnior LJ (2013) Citronellol reduces orofacial nociceptive behaviour in mice—evidence of involvement of retrosplenial cortex and periaqueductal grey areas. Basic Clin Pharmacol Toxicol 112:215–221

    Article  CAS  PubMed  Google Scholar 

  • Chichorro JG, Lorenzetti BB, Zampronio AR (2004) Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. Br J Pharmacol 141:1175–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JD (2016) Preclinical pain research: can we do better? Anesthesiology 125(5):846–849

    Article  CAS  PubMed  Google Scholar 

  • Clavelou P, Dallel R, Orliaguet T, Woda A, Raboisson P (1995) The orofacial formalin test in rats: effects of different formalin concentrations. Pain 62:295–301

    Article  CAS  PubMed  Google Scholar 

  • Damasceno MB, Melo Júnior JM, Santos SA, Melo LT, Leite LH, Vieira-Neto AE, Moreira Rde A, Monteiro-Moreira AC, Campos AR (2016) Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain. Chem Biol Interact 256:9–15

    Article  CAS  PubMed  Google Scholar 

  • Diogenes A, Akopian AN, Hargreaves KM (2007) NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 86:550–555

    Article  CAS  PubMed  Google Scholar 

  • El Karim I, McCrudden MTC, Linden GJ, Abdullah H, Curtis TM, McGahon M, About I, Irwin C, Lundy FT (2015) TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells. Am J Pathol 185:2994–3002

    Article  CAS  PubMed  Google Scholar 

  • Erfanparast A, Tamaddonfard E, Taati M, Dabbaghi M (2015) Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats. Avicenna J Phytomed 5(5):392–402

    PubMed  PubMed Central  Google Scholar 

  • Flores MP, Castro APCR, Nascimento JR (2012) Topical analgesics. Rev Bras Anestesiol 62(2):244–252

    Article  CAS  PubMed  Google Scholar 

  • Fusi C, Materazzi S, Benemei S, Coppi E, Trevisan G, Marone IM, Minocci D, De Logu F, Tuccinardi T, Di Tommaso MR, Susini T, Moneti G, Pieraccini G, Geppetti P, Nassini R (2014) Steroidal and non-steroidal third-generation aromatase inhibitors induce pain-like symptoms via TRPA1. Nat Commun 5:5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gameiro GH, da Silva AA, de Castro M, Pereira LF, Tambeli CH, Veiga MC (2005) The effects of restraint stress on nociceptive responses induced by formalin injected in rat’s TMJ. Pharmacol Biochem Behav 82:338–344

    Article  CAS  PubMed  Google Scholar 

  • Guimarães AG, Quintans JSS, Quintans-Júnior LJ (2013) Monoterpenes with analgesic activity—a systematic review. Phyther Res 27:1–15

    Article  Google Scholar 

  • Guimarães AG, Serafini MR, Quintans-Júnior LJ (2014) Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin Ther Pat 24:243–265

    Article  PubMed  Google Scholar 

  • Hargreaves KM (2011) Congress orofacial pain. Pain 152(3 Suppl):S25–S32

    Article  PubMed  PubMed Central  Google Scholar 

  • Hargreaves KM, Ruparel S (2016) Role of oxidized lipids and TRP channels in orofacial pain and inflammation. J Dent Res 95:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Janal MN, Raphael KG, Nayak S, Klausner J (2008) Prevalence of myofascial temporomandibular disorder in US community women. J Oral Rehabil 35:801–809

    Article  CAS  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  • Jorge LL, Feres CC, Teles VEP (2011) Topical preparations for pain relief: efficacy and patient adherence. J Pain Res 4:11–24

    Google Scholar 

  • Kamatou GPP, Viljoen AM (2010) A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. JAOCS, J Am Oil Chem Soc 87:1–7

    Article  CAS  Google Scholar 

  • Leite GO (2011) Atividades antiinflamatória tópica e antinociceptiva visceral do óleo essencial de Vanillosmopsis arborea Baker e do seu principal constituinte (−)-α-bisabolol. Dissertation. Universidade Regional do Cariri

  • Leite GO, Leite LH, Sampaio RS, Araruna MK, Menezes IR, Costa JG, Campos AR (2011a) (−)-α-Bisabolol attenuates visceral nociception and inflammation in mice. Fitoterapia 82:208–211

    Article  CAS  PubMed  Google Scholar 

  • Leite GO, Leite LHI, Sampaio RS, Araruna MK, Rodrigues FF, Menezes IR, Costa JG, Campos AR (2011b) Modulation of topical inflammation and visceral nociception by Vanillosmopsis arborea essential oil in mice. Biomed Prev Nutr 1:216–222

    Article  Google Scholar 

  • Leite GDO, Fernandes CN, Alencar de Menezes IR, da Costa JGM, Campos AR (2012) Attenuation of visceral nociception by α-bisabolol in mice: investigation of mechanisms. Org Med Chem Lett 2:18

  • Luccarini P, Childeric A, Gaydier AM, Voisin D, Dallel R (2006) The orofacial formalin test in the mouse: a behavioral model for studying physiology and modulation of trigeminal nociception. J Pain 7:908–914

    Article  PubMed  Google Scholar 

  • Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materazzi S, Nassini R, Andrè E, Campi B, Amadesi S, Trevisani M, Bunnett NW, Patacchini R, Geppetti P (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 105:12045–12050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya AK, Singh M, Dubey V, Srivastava S, Luqman S, Bawankule DU (2014) α-(−)-Bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr Pharm Biotechnol 15(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. PNAS 104:30

    Article  Google Scholar 

  • Moura Rocha NF, Venâncio ET, Moura BA, Gomes Silva MI, Aquino Neto MR, Vasconcelos Rios ER, de Sousa DP, Mendes Vasconcelos SM, de França Fonteles MM, de Sousa FC (2010) Gastroprotection of (−)-alpha-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms. Fundam Clin Pharmacol 24:63–71

    Article  PubMed  Google Scholar 

  • Nomura EC, Rodrigues MR, da Silva CF, Hamm LA, Nascimento AM, de Souza LM, Cipriani TR, Baggio CH, Werner MF (2013) Antinociceptive effects of ethanolic extract from the flowers of Acmella oleracea (L.) R.K. Jansen in mice. J Ethnopharmacol 50(2):583–589

    Article  Google Scholar 

  • Okamoto K, Imbe H, Tashiro A, Kumabe S, Senba E (2004) Blockade of peripheral 5HT3 receptor attenuates the formalin-induced nocifensive behavior in persistent temporomandibular joint inflammation of rat. Neurosci Lett 367:259–263

    Article  CAS  PubMed  Google Scholar 

  • Ortiz MI, Fernández-Martínez E, Soria-Jasso LE, Lucas-Gómez I, Villagómez-Ibarra R, González-García MP, Castañeda-Hernández G, Salinas-Caballero M (2016) Isolation, identification and molecular docking as cyclooxygenase (COX) inhibitors of the main constituents of Matricaria chamomilla L. extract and its synergistic interaction with diclofenac on nociception and gastric damage in rats. Biomed Pharmacother 78:248–256

    Article  CAS  PubMed  Google Scholar 

  • Quintans-Júnior LJ, Melo MS, De Sousa DP, Araujo AA, Onofre AC, Gelain DP, Gonçalves JC, Araújo DA, Almeida JR, Bonjardim LR (2010) Antinociceptive effects of citronellal in formalin-, capsaicin-, and glutamate-induced orofacial nociception in rodents and its action on nerve excitability. J Orofac Pain 24:305–312

    PubMed  Google Scholar 

  • Raboisson P, Dallel R (2004) The orofacial formalin test. Neurosci Biobehav Rev 28:219–226

    Article  PubMed  Google Scholar 

  • Rocha NF, Rios ER, Carvalho AM, Cerqueira GS, Lopes Ade A, Leal LK, Dias ML, de Sousa DP, de Sousa FC (2011) Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedeberg’s Arch Pharmacol 384:525–533

    Article  CAS  Google Scholar 

  • Roveroni RC, Parada CA, Cecília M, Veiga FA, Tambeli CH (2001) Development of a behavioral model of TMJ pain in rats: the TMJ formalin test. Pain 94:185–191

    Article  CAS  PubMed  Google Scholar 

  • Sessle BJ (2005) Peripheral and central mechanisms of orofacial pain and their clinical correlates. Minerva Anestesiol 71:117–136

    CAS  PubMed  Google Scholar 

  • Sessle BJ (2011) Peripheral and central mechanisms of orofacial inflammatory pain. In: Sessle BJ (ed) International review of neurobiology, 1st edn. Elsevier Inc., pp 179–206

  • Sessle BJ (2014) Orofacial pain: recent advances in assessment, management, and understanding of mechanisms. IASP, Washington

    Google Scholar 

  • Sharav Y, Benoliel R (2008) Acute orofacial pain. In: Sharav Y, Benoliel R (eds) Orofacial pain and headache, 1st edn. Elsevier, London, pp. 75–90

    Chapter  Google Scholar 

  • Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794

    Article  CAS  PubMed  Google Scholar 

  • Siqueira-Lima PS, Araújo AA, Lucchese AM, Quintans JS, Menezes PP, Alves PB, de Lucca JW, Santos MR, Bonjardim LR, Quintans-Júnior LJ (2014) β-Cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice—evidence of possible involvement of descending inhibitory pain modulation pathway. Basic Clin Pharmacol Toxicol 114:188–196

    Article  CAS  PubMed  Google Scholar 

  • Siqueira-Lima PS, Silva JC, Quintans JSS, Antoniolli AR, Shanmugam S, Barreto RSS, Santos MRV, Almeida JRGS, Bonjardim LR, Menezes IRA, Quintans-Júnior LJ (2016) Natural products assessed in animal models for orofacial pain—a systematic review. Rev Bras Farmacogn 1–11.

  • Wei H, Wu HY, Fan H et al (2016) Potential role of spinal TRPA1 channels in antinociceptive tolerance to spinally administered morphine. Pharmacol Reports 68:472–475

    Article  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordination of Continuing Higher Education), CNPq (National Council for Scientific and Technological Development), Funcap (Ceará State Foundation of Support for Scientific and Technological Development), and the Edson Queiroz Foundation (University of Fortaleza) for the fellowship, financial support, and infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Torres Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study protocol was in accordance with the ethical guidelines of the National Council for the Control of Animal Experimentation (CONCEA, Brazil) and was approved and registered under no. 003/12 by the institutional animal ethics committee (CEUA/UNIFOR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, L.T., Duailibe, M.A.B., Pessoa, L.M. et al. (−)-α-Bisabolol reduces orofacial nociceptive behavior in rodents. Naunyn-Schmiedeberg's Arch Pharmacol 390, 187–195 (2017). https://doi.org/10.1007/s00210-016-1319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1319-2

Keywords

Navigation