Skip to main content

Advertisement

Log in

Tumor necrosis factor inhibition increases the revascularization of ischemic hind-limbs in diabetic mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF) is first identified as a mediator of lethal endotoxin poisoning. The anti-TNF therapy in the treatment of rheumatoid arthritis is based on the recognition of the role of TNF as the master regulator. Type II diabetes is characterized with altered stem cells and reduced vasculogenesis. Therefore, we aimed to determine if TNF inhibitor would improve vasculogenesis in ischemic hind-limbs of diabetic mice. Fifty male type 2 diabetic and their control (8–10 weeks old mice) were used, and ischemia was induced in the hind-limbs of all mice for 28 days. Vessel density was assessed by high-definition microangiography at the end of the treatment period. After 4 weeks, vessel density displayed no difference between the ischemic and the non-ischemic legs in control mice. However, in diabetic mice, the ischemic hind-limb vessel density was significantly decreased. Interestingly, diabetic mice displayed a significant improved vasculogenesis when treated with TNF inhibitor. Moreover, this data was confirmed by capillary density determined by immunostaining. TNF inhibitors are able to improve the formation of microvessels in response to ischemia in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alqurashi KA, Aljabri KS, Bokhari SA (2011) Prevalence of diabetes mellitus in a Saudi community. Ann Saudi Med 31(1):19–23

    Article  PubMed Central  PubMed  Google Scholar 

  • Amin AH et al (2010) Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Lab Invest 90(7):985–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arend WP (2002) The mode of action of cytokine inhibitors. J Rheumatol Suppl 65:16–21

    CAS  PubMed  Google Scholar 

  • Bal Y, Adas M, Helvaci A (2010) Evaluation of the relationship between insulin resistance and plasma tumor necrosis factor-alpha, interleukin-6 and C-reactive protein levels in obese women. Bratisl Lek Listy 111(4):200–204

    CAS  PubMed  Google Scholar 

  • Belmadani S et al (2008a) Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes 57(6):1629–1637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belmadani S et al (2008b) Microvessel vascular smooth muscle cells contribute to collagen type I deposition through ERK1/2 MAP kinase, alphavbeta3-integrin, and TGF-beta1 in response to ANG II and high glucose. Am J Physiol Heart Circ Physiol 295(1):H69–H76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belmadani S et al (2009) Amplification of coronary arteriogenic capacity of multipotent stromal cells by epidermal growth factor. Arterioscler Thromb Vasc Biol 29(6):802–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  CAS  PubMed  Google Scholar 

  • Chan SC et al (2008) Upregulation of ICAM-1 expression in bronchial epithelial cells by airway secretions in bronchiectasis. Respir Med 102(2):287–298

    Article  PubMed  Google Scholar 

  • Chen JX, Stinnett A (2008) Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol 28(9):1606–1613

    Article  CAS  PubMed  Google Scholar 

  • Chen CH et al (2009) Altitude hypoxia increases glucose uptake in human heart. High Alt Med Biol 10(1):83–86

    Article  CAS  PubMed  Google Scholar 

  • Dabek J et al (2012) Transcriptional activity of tumour necrosis factor alpha (TNF-alpha) in patients with subclinical coronary atherosclerosis—preliminary results. Folia Biol (Praha) 58(5):209–214

    CAS  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72

    Article  CAS  PubMed  Google Scholar 

  • Flyvbjerg A (2010) Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 6(2):94–101

    Article  CAS  PubMed  Google Scholar 

  • Galiano RD et al (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grounds MD et al (2005) Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice. Cell Tissue Res 320(3):509–515

    Article  CAS  PubMed  Google Scholar 

  • Guthmann F, Wissel H, Rustow B (2009) Early subcutaneous administration of etanercept (Enbrel) prevents from hyperoxia-induced lung injury. Exp Lung Res 35(9):770–780

    Article  CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Jacobi J et al (2004) Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110(16):2424–2429

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Collins AJ, Keane WF (2000) Diabetes in the elderly population. Adv Ren Replace Ther 7(1):32–51

    CAS  PubMed  Google Scholar 

  • Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267

    PubMed Central  PubMed  Google Scholar 

  • Kung AL et al (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6(12):1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Lebherz C et al (2005) Nonhuman primate models for diabetic ocular neovascularization using AAV2-mediated overexpression of vascular endothelial growth factor. Diabetes 54(4):1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Komada MR, Sane DC (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23(2):117–145

    Article  CAS  PubMed  Google Scholar 

  • Mikuls TR, Moreland LW (2001) TNF blockade in the treatment of rheumatoid arthritis: infliximab versus etanercept. Expert Opin Pharmacother 2(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298(8):902–916

    Article  CAS  PubMed  Google Scholar 

  • Most RS, Sinnock P (1983) The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care 6(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Murray J et al (1997) Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood 90(7):2772–2783

    CAS  PubMed  Google Scholar 

  • Nakagawa T et al (2009) Abnormal angiogenesis in diabetic nephropathy. Diabetes 58(7):1471–1478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piwkowska A et al (2011) High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J Cell Biochem 112(6):1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Rink L, Kirchner H (1996) Recent progress in the tumor necrosis factor-alpha field. Int Arch Allergy Immunol 111(3):199–209

    Article  CAS  PubMed  Google Scholar 

  • Santilli JD, Santilli SM (1999) Chronic critical limb ischemia: diagnosis, treatment and prognosis. Am Fam Physician 59(7):1899–1908

    CAS  PubMed  Google Scholar 

  • Schiekofer S et al (2005) Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol 25(8):1603–1609

    Article  CAS  PubMed  Google Scholar 

  • Simons M (2005) Angiogenesis: where do we stand now? Circulation 111(12):1556–1566

    Article  PubMed  Google Scholar 

  • Su J et al (2008) Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice. Arterioscler Thromb Vasc Biol 28(8):1432–1438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tchoghandjian A et al (2013) Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells. Cell Death Dis 4, e564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thangarajah H et al (2010) HIF-1alpha dysfunction in diabetes. Cell Cycle 9(1):75–79

    Article  CAS  PubMed  Google Scholar 

  • von der Thusen JH et al (2003) Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 55(1):133–166

    Article  PubMed  Google Scholar 

  • Waltenberger J (2001) Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 49(3):554–560

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2009) Call for a reference model of chronic hind limb ischemia to investigate therapeutic angiogenesis. Vascul Pharmacol 51(4):268–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the helpful scientific revision from Prof. Dr. M.F. Ramadan (Institute of Scientific Research and Revival of Islamic Heritage, Umm Al-Qura University, Makkah, KSA)

Sources of funding

The authors would like to thank the Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (Project ID 43309046) for the financial support.

Disclosures

None.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assiri, A.M.A., El-Baz, H.A. & Amin, A.H. Tumor necrosis factor inhibition increases the revascularization of ischemic hind-limbs in diabetic mice. Naunyn-Schmiedeberg's Arch Pharmacol 388, 1053–1060 (2015). https://doi.org/10.1007/s00210-015-1138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1138-x

Keywords

Navigation