Skip to main content

Advertisement

Log in

Role of GABAergic activity of sodium valproate against ischemia–reperfusion-induced acute kidney injury in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Gamma amino butyric acid (GABA) has been reported to be renoprotective in various preclinical studies. Sodium valproate (SVP) is documented to protect against renal injury through its histone deacetylase-inhibiting activity. The present study investigated the involvement of GABAA receptors and the role of GABAergic activity of SVP against ischemia–reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h to induce AKI. The creatinine clearance, serum urea, uric acid, lactate dehydrogenase, potassium, fractional excretion of sodium, and microproteinuria were measured to assess kidney injury. The thiobarbituric acid-reactive substances, reduced glutathione level, myeloperoxidase, and catalase activity were assayed to assess oxidative stress in renal tissues along with hematoxylin–eosin staining to observe histopathological changes. The ischemia–reperfusion-induced AKI witnessed an increase in serum parameters, microproteinuria, oxidative stress, and histopathological changes in renal tissues. Picrotoxin aggravated ischemia–reperfusion injury-induced AKI confirming the role of GABAA receptors in AKI. The SVP treatment afforded protection against AKI that was blocked by concurrent treatment with picrotoxin. Hence, it is concluded that regulation of GABAA receptors is important for management of AKI. Moreover, the GABAergic activity of SVP is important for its renoprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aebi H, Wyss SR, Scherze B, Skvaril F (1974) Heterogenecity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 17:307–318

    Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43:1160–1178

    Article  CAS  PubMed  Google Scholar 

  • Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210

    Article  PubMed  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  • Cerda J, Lameire N, Eggers P, Pannu N, Uchino S, Wang H, Bagga A, Levin A (2008) Epidemiology of acute kidney injury. Clin J Am Soc Nephrol 3:881–886

    Article  PubMed  Google Scholar 

  • Chen J, Chen KJ, Harris RC (2012) Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int 82:45–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham MO, Woodhall GL, Jones RS (2003) Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro. Neuropharmacology 45:907–917

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylase (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  • Erdo SL, Dob E, Pfirducz A, Wolff JR (1991) Releasable GABA in tubular epithelium of rat kidney. Experientia 47:227–229

    Article  CAS  PubMed  Google Scholar 

  • Gajcy K, Lochynski S, Librowski T (2010) A role of GABA analogues in the treatment of neurological diseases. Curr Med Chem 17:2338–2347

    Article  CAS  PubMed  Google Scholar 

  • Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV (2006) The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 124:1–8

    Article  CAS  PubMed  Google Scholar 

  • Harrison NL, Simmonds MA (1982) Sodium valproate enhances responses to GABA receptor activation only at high concentrations. Brain Res 250:201–204

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, McCulloch CE, Fan D, Ordon JD, Chertow GM, Go AS (2007) Community-based incidence of acute renal failure. Kidney Int 72:208–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HY, Yokozawa T, Nakagawa T, Sasaki S (2004) Protective effect of gamma-amino butyric acid against glycerol induced acute renal failure in rats. Food Chem Toxicol 42:2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901

    Article  CAS  PubMed  Google Scholar 

  • Kobuchi S, Tanaka R, Shintani T, Suzuki R, Tsutsui H, Ohkita M, Ayajiki K, Matsumura Y (2011) Mechanisms underlying the renoprotective effect of γ-aminobutyric acid against the ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther 338:767–774

    Article  CAS  PubMed  Google Scholar 

  • Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344–1350

    CAS  PubMed  Google Scholar 

  • Lee TM, Lin MS, Chang NC (2007) Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 293:H968–H977

    Article  CAS  PubMed  Google Scholar 

  • Lee JP, Yang SH, Lee HY, Kim B, Cho JY, Paik JH, Oh YJ, Kim DK, Lim CS, Kim YS (2012) Soluble epoxide hydrolase activity determines the severity of ischemia-reperfusion injury in kidney. PloS One 7:1–10

    CAS  Google Scholar 

  • Mansano AM, Viannall PTG, Fabris VE, Da Silva LM, Braz LG, Castiglia YM (2012) Prevention of renal ischemia/reperfusion injury in rats using acetylcysteine after anesthesia with isoflurane. Acta Cir Bras 27:340–345

    Article  PubMed  Google Scholar 

  • Marumo T, Hishikawa K, Yoshikawa M, Hirahashi J, Kawachi S, Fujita T (2010) Histone deacetylase modulates the proinflammatory and fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol 298:133–141

    Article  Google Scholar 

  • Monti B, Polazzi E, Contestabile A (2009) Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2:95–109

    CAS  PubMed  Google Scholar 

  • Motohashi N (1992) GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 16:571–579

    Article  CAS  PubMed  Google Scholar 

  • Nichans WG, Samuelson B (1968) Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  Google Scholar 

  • Paller MS, Holdal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patschan D, Patschan S, Muller GA (2012) Inflammation and microvasculopathy in renal ischemia reperfusion injury. J Transplant 2012:764154. doi:10.1155/2012/764154

  • Sarang SS, Lukyanova SM, Brown DD, Cummings BS, Gullans SR, Schnellmann RG (2008) Identification, coassembly, and activity of γ-aminobutyric acid receptor subunits in renal proximal tubular cells. J Pharmacol Exp Ther 324:376–382

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Saito M, Kinoshita Y, Ohmasa F, Dimitriadis F, Shomori K, Hayashi A, Satoh K (2011) Nicorandil ameliorates ischaemia-reperfusion injury in the rat kidney. Br J Pharmacol 163:272–282

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh AP, Singh M, Krishan P (2011) Impact of obesity on hypertension-induced cardiac remodeling: role of oxidative stress and its modulation by gemfibrozil treatment in rats. Free Radic Biol Med 50:363–370

    Article  CAS  PubMed  Google Scholar 

  • Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van Grunsven LA, Van den Branden C (2011) Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 22:1863–1875

    Article  PubMed  Google Scholar 

  • Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM (2011) Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31:52–57

    Article  PubMed  Google Scholar 

  • Zacharias N, Sailhamer EA, Li Y, Liu B, Butt MU, Shuja F, Velmahos GC, de Moya M, Alam HB (2010) Histone deacetylase inhibitors prevent apoptosis following lethal hemorrhagic shock in rodent kidney cells. Resuscitation 82:105–109

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Pal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brar, R., Singh, J.P., Kaur, T. et al. Role of GABAergic activity of sodium valproate against ischemia–reperfusion-induced acute kidney injury in rats. Naunyn-Schmiedeberg's Arch Pharmacol 387, 143–151 (2014). https://doi.org/10.1007/s00210-013-0928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0928-2

Keywords

Navigation