Skip to main content

Advertisement

Log in

FLZ inhibited γ-secretase selectively and decreased Aβ mitochondrial production in APP-SH-SY5Y cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Amyloid precursor protein (APP) metabolism is a key factor in the pathogenesis of Alzheimer’s disease (AD). Amyloid-beta (Aβ) in mitochondria comes from APP mitochondrial metabolism or from the uptake Aβ from outside of mitochondria. It has been recently proposed that mitochondria are involved in the biochemical pathways through which Aβ causes neuronal dysfunction. The accumulated Aβ in mitochondria decreases the level of cytochrome c oxidase (COX IV) and attenuates the ATP production consequently. FLZ is a synthetic cyclic derivative of squamosamide from Annona glabra. In this study, the effect of FLZ on APP processing in mitochondria was investigated in SH-SY5Y cells over-expressing APP695 (wt/Swe). FLZ treatment attenuated APP processing and decreased Aβ production in mitochondria. The mitochondrial function was increased with the upregulation of COX IV both at protein and activity levels. ATP production was also increased after FLZ treatment. The mechanistic study showed that FLZ inhibited γ-secretase activity by decreasing C-terminal fragment protein level of presenilin, the active center of γ-secretase. The effect of FLZ differs from DAPT (a non-selective γ-secretase inhibitor), suggesting FLZ is a selective γ-secretase inhibitor. FLZ selectively inhibited γ-secretase in the cleavage of recombinant C terminus of APP in vitro, without specifically modulating the processing of recombinant Notch intracellular domain. These results indicate that FLZ decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. We propose that FLZ is a potential anti-AD drug candidate, and its mechanism may be improving mitochondrial function by reducing the Aβ burden in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12:269–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74:342–352

    Article  CAS  PubMed  Google Scholar 

  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    Article  CAS  PubMed  Google Scholar 

  • Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7:297–310

    Article  CAS  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Basi GS, Hemphill S, Brigham EF, Liao A, Aubele DL, Baker J, Barbour R, Bova M, Chen XH, Dappen MS, Eichenbaum T, Goldbach E, Hawkinson J, Lawler-Herbold R, Hu K, Hui T, Jagodzinski JJ, Keim PS, Kholodenko D, Latimer LH, Lee M, Marugg J, Mattson MN, McCauley S, Miller JL, Motter R, Mutter L, Neitzel ML, Ni H, Nguyen L, Quinn K, Ruslim L, Semko CM, Shapiro P, Smith J, Soriano F, Szoke B, Tanaka K, Tang P, Tucker JA, Ye XM, Yu M, Wu J, Xu YZ, Garofalo AW, Sauer JM, Konradi AW, Ness D, Shopp G, Pleiss MA, Freedman SB, Schenk D (2010) Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers Res Ther 2:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Matera R, Minarini A, Rosini M, Melchiorre C (2009) Alzheimer’s disease: new approaches to drug discovery. Curr Opin Chem Biol 13:303–308

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140

    Article  CAS  PubMed  Google Scholar 

  • Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Gutierrez L, Tolia A, Maes E, Li T, Wong PC, de Strooper B (2008) Glu(332) in the nicastrin ectodomain is essential for gamma-secretase complex maturation but not for its activity. J Biol Chem 283:20096–20105

    Article  CAS  PubMed  Google Scholar 

  • Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    Article  CAS  PubMed  Google Scholar 

  • Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 25:672–679

    Article  CAS  PubMed  Google Scholar 

  • David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Drose S, Brandt U, Muller WE, Eckert A, Gotz J (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802–23814

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38:9–12

    Article  PubMed  Google Scholar 

  • De Strooper B, Annaert W (2010) Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu Rev Cell Dev Biol 26:235–260

    Article  PubMed  Google Scholar 

  • De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  PubMed Central  PubMed  Google Scholar 

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW (1997) Neuropathological diagnosis of Alzheimer’s disease: a perspective from longitudinal clinicopathological studies. Neurobiol Aging 18:S21–S26

    Article  CAS  PubMed  Google Scholar 

  • D’Onofrio G, Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Paroni G, Cascavilla L, Seripa D, Pilotto A (2012) Advances in the identification of gamma-secretase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Discov 7:19–37

    Article  PubMed  Google Scholar 

  • Dotto GP (2008) Notch tumor suppressor function. Oncogene 27:5115–5123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumont M, Beal MF (2010) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Article  PubMed Central  PubMed  Google Scholar 

  • Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5:486–488

    Article  CAS  PubMed  Google Scholar 

  • Esler WP, Kimberly WT, Ostaszewski BL, Ye W, Diehl TS, Selkoe DJ, Wolfe MS (2002) Activity-dependent isolation of the presenilin-gamma-secretase complex reveals nicastrin and a gamma substrate. Proc Natl Acad Sci U S A 99:2720–2725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang F, Liu GT (2006) Protective effects of compound FLZ on beta-amyloid peptide-(25–35)-induced mouse hippocampal injury and learning and memory impairment. Acta Pharmacol Sin 27:651–658

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Liu G (2007) A novel cyclic squamosamide analogue compound FLZ improves memory impairment in artificial senescence mice induced by chronic injection of d-galactose and NaNO2. Basic Clin Pharmacol Toxicol 101:447–454

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Liu GT (2008) Novel squamosamide derivative (compound FLZ) attenuates Abeta25-35-induced toxicity in SH-SY5Y cells. Acta Pharmacol Sin 29:152–160

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Liu GT (2009) Protective effects of compound FLZ, a novel synthetic analogue of squamosamide, on beta-amyloid-induced rat brain mitochondrial dysfunction in vitro. Acta Pharmacol Sin 30:522–529

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Wei H, Liu GT (2005) Pharmacological study of the novel compound FLZ against experimental Parkinson’s models and its active mechanism. Mol Neurobiol 31:295–300

    Article  CAS  PubMed  Google Scholar 

  • Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E, Ankarcrona M (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105:13145–13150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  CAS  PubMed  Google Scholar 

  • Hebert SS, Godin C, Levesque G (2003) Oligomerization of human presenilin-1 fragments. FEBS Lett 550:30–34

    Article  CAS  PubMed  Google Scholar 

  • Henley DB, May PC, Dean RA, Siemers ER (2009) Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 10:1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2:461–462

    Article  CAS  PubMed  Google Scholar 

  • High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61

    Article  CAS  PubMed  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Muller-Spahn F, Haass C, Czech C, Pradier L, Muller WE, Eckert A (2004) Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279:50310–50320

    Article  CAS  PubMed  Google Scholar 

  • Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100:6382–6387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kornilova AY, Das C, Wolfe MS (2003) Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications. J Biol Chem 278:16470–16473

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Mattson MP, Cheng A (2008) Notch: from neural development to neurological disorders. J Neurochem 107:1471–1481

    Article  CAS  PubMed  Google Scholar 

  • Laudon H, Mathews PM, Karlstrom H, Bergman A, Farmery MR, Nixon RA, Winblad B, Gandy SE, Lendahl U, Lundkvist J, Naslund J (2004) Co-expressed presenilin 1 NTF and CTF form functional gamma-secretase complexes in cells devoid of full-length protein. J Neurochem 89:44–53

    Article  PubMed  Google Scholar 

  • Li N, Liu GT (2010) The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 31:265–272

    Article  PubMed  Google Scholar 

  • Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci U S A 97:6138–6143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93–102

    Article  CAS  PubMed  Google Scholar 

  • Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  Google Scholar 

  • Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82:341–358

    Article  CAS  PubMed  Google Scholar 

  • Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T, Tomita T (2006) C-terminal fragment of presenilin is the molecular target of a dipeptidic gamma-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). J Biol Chem 281:14670–14676

    Article  CAS  PubMed  Google Scholar 

  • Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B, Ankarcrona M (2011) Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 25:78–88

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen UF, Rasmussen HN (2000) Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem 208:37–44

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 13:1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F, Eckert A (2009a) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U, Savaskan E, Czech C, Gotz J, Eckert A (2009b) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106:20057–20062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L (2008) Rational targeting of Notch signaling in cancer. Oncogene 27:5124–5131

    Article  CAS  PubMed  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    Article  CAS  PubMed  Google Scholar 

  • Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, Gao H, Higgins MA, May PC, Ryan TP (2003) Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 278:46107–46116

    Article  CAS  PubMed  Google Scholar 

  • Sisodia SS, St George-Hyslop PH (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, Hardy J, Yu X, Picciano M, Fechteler K, Citron M, Kopan R, Pesold B, Keck S, Baader M, Tomita T, Iwatsubo T, Baumeister R, Haass C (1999) A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem 274:28669–28673

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Butterfield DA (2009) Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J Bioenerg Biomembr 41:441–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279

    PubMed  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422:438–441

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  • Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882

    Article  CAS  PubMed  Google Scholar 

  • Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG (2009) Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 390:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Tai W, Zhang D (2011) The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 33:1122e1-1122e10

    Google Scholar 

  • Yin L, Velazquez OC, Liu ZJ (2010) Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 80:690–701

    Article  CAS  PubMed  Google Scholar 

  • Young KJ, Bennett JP (2010) The mitochondrial secret(ase) of Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S381–S400

    PubMed  Google Scholar 

  • Zhang D, Zhang JJ, Liu GT (2007a) The novel squamosamide derivative (compound FLZ) attenuated 1-methyl, 4-phenyl-pyridinium ion (MPP+)-induced apoptosis and alternations of related signal transduction in SH-SY5Y cells. Neuropharmacology 52:423–429

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhang JJ, Liu GT (2007b) The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells. Eur J Pharmacol 561:1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Science Foundation of China (No. 81001430), Fundamental Research Funds for the Central Universities (2012S08), and Beijing NOVA Program (Z111102054 511129). This work was supported by Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (No.BZ0150). There are no potential conflicts about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Tai, W., Bao, X. et al. FLZ inhibited γ-secretase selectively and decreased Aβ mitochondrial production in APP-SH-SY5Y cells. Naunyn-Schmiedeberg's Arch Pharmacol 387, 75–85 (2014). https://doi.org/10.1007/s00210-013-0918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0918-4

Keywords

Navigation