Skip to main content

Advertisement

Log in

Hydrogen Sulfide Selectively Inhibits γ-Secretase Activity and Decreases Mitochondrial Aβ Production in Neurons from APP/PS1 Transgenic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer’s disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30 μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50 μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30 μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science (New York, NY) 298:789–791

    Article  CAS  Google Scholar 

  3. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science (New York, NY) 248:1122–1124

    Article  CAS  Google Scholar 

  4. Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science (New York, NY) 248:492–495

    Article  CAS  Google Scholar 

  5. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci USA 96:742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tienari PJ, Ida N, Ikonen E, Simons M, Weidemann A, Multhaup G, Masters CL, Dotti CG, Beyreuther K (1997) Intracellular and secreted Alzheimer beta-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc Natl Acad Sci USA 94:4125–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson CA, Doms RW, Lee VM (1999) Intracellular APP processing and A beta production in Alzheimer disease. J Neuropathol Exp Neurol 58:787–794

    Article  CAS  PubMed  Google Scholar 

  8. Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    CAS  PubMed  Google Scholar 

  9. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5:486–488

    Article  CAS  PubMed  Google Scholar 

  10. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100:6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  PubMed  Google Scholar 

  12. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176

    Article  CAS  PubMed  Google Scholar 

  13. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  14. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP, Letellier T, Dachary-Prigent J, Solaini GC, Rossignol R (2005) Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr 37:207–225

    Article  CAS  PubMed  Google Scholar 

  17. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A, Schachner M (2008) Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 13:953–969

    Article  CAS  PubMed  Google Scholar 

  19. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ (2013) Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J Neurosci 33:17042–17051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  CAS  PubMed  Google Scholar 

  21. Lin MT, Beal MF (2006) Alzheimer’s APP mangles mitochondria. Nat Med 12:1241–1243

    Article  CAS  PubMed  Google Scholar 

  22. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    Article  CAS  PubMed  Google Scholar 

  23. Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611

    Article  CAS  PubMed  Google Scholar 

  24. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  CAS  PubMed  Google Scholar 

  25. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  Google Scholar 

  26. Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100:1121–1128

    Article  CAS  PubMed  Google Scholar 

  27. Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    Article  CAS  PubMed  Google Scholar 

  28. Xuan A, Long D, Li J, Ji W, Zhang M, Hong L, Liu J (2012) Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease. J Neuroinflammation 9:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186

    CAS  PubMed  Google Scholar 

  30. Zhang H, Gao Y, Zhao F, Dai Z, Meng T, Tu S, Yan Y (2011) Hydrogen sulfide reduces mRNA and protein levels of beta-site amyloid precursor protein cleaving enzyme 1 in PC12 cells. Neurochem Int 58:169–175

    Article  CAS  PubMed  Google Scholar 

  31. Giuliani D, Ottani A, Zaffe D, Galantucci M, Strinati F, Lodi R, Guarini S (2013) Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem 104:82–91

    Article  CAS  PubMed  Google Scholar 

  32. Albers S, Inthathirath F, Gill SK, Winick-Ng W, Jaworski E, Wong DY, Gros R, Rylett RJ (2014) Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice. Neurobiol Dis 69:32–42

    Article  CAS  PubMed  Google Scholar 

  33. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  CAS  PubMed  Google Scholar 

  34. Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, Xu H (2007) Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci USA 104:10613–10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gero D, Szoleczky P, Suzuki K, Modis K, Olah G, Coletta C, Szabo C (2013) Cell-based screening identifies paroxetine as an inhibitor of diabetic endothelial dysfunction. Diabetes 62:953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farmery MR, Tjernberg LO, Pursglove SE, Bergman A, Winblad B, Naslund J (2003) Partial purification and characterization of gamma-secretase from post-mortem human brain. J Biol Chem 278:24277–24284

    Article  CAS  PubMed  Google Scholar 

  37. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Drose S, Brandt U, Muller WE, Eckert A, Gotz J (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802–23814

    Article  CAS  PubMed  Google Scholar 

  38. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Muller-Spahn F, Haass C, Czech C, Pradier L, Muller WE, Eckert A (2004) Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279:50310–50320

    Article  CAS  PubMed  Google Scholar 

  39. Rasmussen UF, Rasmussen HN (2000) Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem 208:37–44

    Article  CAS  PubMed  Google Scholar 

  40. Sisodia SS, St George-Hyslop PH (2002) γ-Secretase, notch, Aβ and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290

    Article  CAS  PubMed  Google Scholar 

  41. Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B, Ankarcrona M (2011) Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 25:78–88

    Article  CAS  PubMed  Google Scholar 

  42. Ahn K, Shelton CC, Tian Y, Zhang X, Gilchrist ML, Sisodia SS, Li YM (2010) Activation and intrinsic γ-secretase activity of presenilin 1. Proc Natl Acad Sci USA 107:21435–21440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ (2000) The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J Biol Chem 275:3173–3178

    Article  CAS  PubMed  Google Scholar 

  44. Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000) Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694

    Article  CAS  PubMed  Google Scholar 

  45. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  46. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, Ball H, Dann CE 3rd, Sudhof T, Yu G (2005) Nicastrin functions as a γ-secretase-substrate receptor. Cell 122:435–447

    Article  CAS  PubMed  Google Scholar 

  47. Niimura M, Isoo N, Takasugi N, Tsuruoka M, Ui-Tei K, Saigo K, Morohashi Y, Tomita T, Iwatsubo T (2005) Aph-1 contributes to the stabilization and trafficking of the γ-secretase complex through mechanisms involving intermolecular and intramolecular interactions. J Biol Chem 280:12967–12975

    Article  CAS  PubMed  Google Scholar 

  48. Prokop S, Shirotani K, Edbauer D, Haass C, Steiner H (2004) Requirement of PEN-2 for stabilization of the presenilin N-/C-terminal fragment heterodimer within the γ-secretase complex. J Biol Chem 279:23255–23261

    Article  CAS  PubMed  Google Scholar 

  49. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the γ-secretase complex. Nature 422:438–441

    Article  CAS  PubMed  Google Scholar 

  50. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    Article  CAS  PubMed  Google Scholar 

  51. Calkins MJ, Reddy PH (2011) Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta 1812:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX (2010) Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J Alzheimers Dis 22:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY) 256:184–185

    Article  CAS  Google Scholar 

  54. Mudher A, Lovestone S (2002) Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    Article  CAS  PubMed  Google Scholar 

  55. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63:8–20

    Article  CAS  PubMed  Google Scholar 

  57. Lundkvist J, Naslund J (2007) Gamma-secretase: a complex target for Alzheimer’s disease. Curr Opin Pharmacol 7:112–118

    Article  CAS  PubMed  Google Scholar 

  58. Tomita T, Iwatsubo T (2006) γ-Secretase as a therapeutic target for treatment of Alzheimer’s disease. Curr Pharm Des 12:661–670

    Article  CAS  PubMed  Google Scholar 

  59. Wei HJ, Li X, Tang XQ (2014) Therapeutic benefits of H(2)S in Alzheimer’s disease. J Clin Neurosci 21:1665–1669

    Article  CAS  PubMed  Google Scholar 

  60. Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP, Khan I, Netzer WJ, Xu H, Butko P (2002) Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 99:12197–12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  62. Cheung NS, Peng ZF, Chen MJ, Moore PK, Whiteman M (2007) Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53:505–514

    Article  CAS  PubMed  Google Scholar 

  63. Kurokawa Y, Sekiguchi F, Kubo S, Yamasaki Y, Matsuda S, Okamoto Y, Sekimoto T, Fukatsu A, Nishikawa H, Kume T, Fukushima N, Akaike A, Kawabata A (2011) Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide. Biochem Biophys Res Commun 414:727–732

    Article  CAS  PubMed  Google Scholar 

  64. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165

    Article  CAS  PubMed  Google Scholar 

  65. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  CAS  PubMed  Google Scholar 

  68. Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E, Ankarcrona M (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 105:13145–13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kornilova AY, Das C, Wolfe MS (2003) Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications. J Biol Chem 278:16470–16473

    Article  CAS  PubMed  Google Scholar 

  72. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279

    PubMed  Google Scholar 

  73. Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611

    Article  CAS  PubMed  Google Scholar 

  74. Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med 6:905–918

    Article  CAS  PubMed  Google Scholar 

  77. Purow B (2012) Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol 727:305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pearson RJ, Wilson T, Wang R (2006) Endogenous hydrogen sulfide and the cardiovascular system-what’s the smell all about? Clin Invest Med 29:146–150

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Zhang (Associate Professor, Neuroscience Center, the First Affiliated Hospital of Chongqing Medical University) for significant comments and scientific support, and Professor Tang for technical assistance. The study was supported by the National Natural Science Foundation of China (Grant No. 81271222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/disclosures related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Fl., Qiao, Pf., Yan, N. et al. Hydrogen Sulfide Selectively Inhibits γ-Secretase Activity and Decreases Mitochondrial Aβ Production in Neurons from APP/PS1 Transgenic Mice. Neurochem Res 41, 1145–1159 (2016). https://doi.org/10.1007/s11064-015-1807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1807-7

Keywords

Navigation