Skip to main content
Log in

Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The P2X7 receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X7 receptor is induced by increasing the intracellular Ca2+ concentration (Faria et al., Am J Physiol Cell Physiol 297:C28–C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X7 large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca2+-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X7 receptor large-channel formation in 2BH4 cells and peritoneal macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adinolfi E, Kim M, Young MT, Di Virgilio F, Surprenant A (2003) Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 278:37344–37351

    Article  CAS  PubMed  Google Scholar 

  • Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact 171(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Auger R, Motta I, Benihoud K, Ojcius DM, Kanellopoulos JM (2005) A role for mitogen-activated protein kinase (Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem 280:28142–28151

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572(1–3):65–68

    Article  CAS  PubMed  Google Scholar 

  • Barbe MT, Monyer H, Bruzzone R (2006) Cell–cell communication beyond connexins: the pannexin channels. Physiology 21:103–114

    Article  CAS  PubMed  Google Scholar 

  • Berchtold S, Ogilvie AL, Bogdan C, Muhl-Zurbes P, Ogilvie A, Schuler G, Steinkasserer A (1999) Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett 24(458):424–428

    Article  Google Scholar 

  • Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–138

    Article  CAS  PubMed  Google Scholar 

  • Bisaggio RC, Nihei OK, Persechini PM, Savino W, Alves LA (2001) Characterization of P2 receptors in thymic epithelial cells. Cell Mol Biol 47:19–31

    CAS  PubMed  Google Scholar 

  • Blanchard DK, Wei S, Duan C, Pericle F, Diaz JI, Djeu JY (1995) Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood 85:3173–3182

    CAS  PubMed  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Budagian V, Bulanova E, Brovko L, Orinska Z, Fayad R, Paus R, Bulfone-Paus S (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 278:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Chaib N, Kabré E, Alzola E, Pochet S, Dehaye JP (2000) Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists. Br J Pharmacol 129:703–708

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Gu BJ, Dao LP, Bradley CJ, Mulligan SP, Wiley JS (1999) Transendothelial migration of lymphocytes in chronic lymphocytic leukaemia is impaired and involved down-regulation of both L-selectin and CD23. Br J Haematol 105:181–189

    Article  CAS  PubMed  Google Scholar 

  • Chessell IP, Michel AD, Humphrey PP (1997) Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells. Br J Pharmacol 121:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Chessell IP, Michel AD, Humphrey PP (1998) Cloning and functional characterisation of the mouse P2X7 receptor. FEBS Lett 439:26–30

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft S, Gomperts BD (1979) Activation and inhibition of Ca2+-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

    CAS  PubMed  Google Scholar 

  • Coutinho-Silva R, Alves LA, Savino W, Persechini PM (1996) A cation non-selective channel induced by extracellular ATP in macrophages and phagocytic cells of the thymic reticulum. Biochim Biophys Acta 1278:125–130

    Article  PubMed  Google Scholar 

  • Coutinho-Silva R, Persechini PM, Bisaggio RD, Perfettini JL, Neto AC, Kanellopoulos JM, Motta-Ly I, Dautry-Varsat A, Ojcius DM (1999) P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 276:C1139–C1147

    CAS  PubMed  Google Scholar 

  • da Cruz CM, Ventura AL, Schachter J, Costa-Junior HM, da Silva Souza HA, Gomes FR, Coutinho-Silva R, Ojcius DM, Persechini PM (2006) Activation of ERK1/2 by extracellular nucleotides in macrophages is mediated by multiple P2 receptors independently of P2X(7)-associated pore or channel formation. Br J Pharmacol 147(3):324–334

    Article  PubMed  Google Scholar 

  • Denlinger LC, Sommer JA, Parker K, Gudipaty L, Fisette PL, Watters JW, Proctor RA, Dubyak GR, Bertics PJ (2003) Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. J Immunol 171:1304–1311

    CAS  PubMed  Google Scholar 

  • Di Virgilio F (1995) The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today 16:524–528

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    Article  PubMed  Google Scholar 

  • Donnelly-Roberts DL, Namovic MT, Faltynek CR, Jarvis MF (2004) Mitogen-activated protein kinase and caspase signaling pathways are required for P2X7 receptor (P2X7R)-induced pore formation in human THP-1 cells. J Pharmacol Exp Ther 308:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • El-Moatassim C, Dubyak GR (1992) A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 267:23664–23673

    CAS  PubMed  Google Scholar 

  • Faria RX, Defarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260–C271

    Article  CAS  PubMed  Google Scholar 

  • Faria RX, Reis RA, Casabulho CM, Alberto AV, de Farias FP, Henriques-Pons A, Alves LA (2009) Pharmacological properties of a pore induced by raising intracellular Ca2+. Am J Physiol Cell Physiol 297:C28–C42

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997a) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997b) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

    CAS  PubMed  Google Scholar 

  • Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow C, Norgauer J, Chiozzi P, Di Virgilio F, Luttmann W (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486:217–224

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Los M, Bauer MK, Vandenabeele P, Wesselborg S, Schulze-Osthoff K (1999) P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett 447:71–75

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Cornish EJ, Wiley JS (1996) Phospholipase D activation by P2Z-purinoceptor agonists in human lymphocytes is dependent on bivalent cation influx. Biochem J 313:529–535

    CAS  PubMed  Google Scholar 

  • Gargett CE, Cornish JE, Wiley JS (1997) ATP, a partial agonist for the P2Z receptor of human lymphocytes. Br J Pharmacol 122:911–917

    Article  CAS  PubMed  Google Scholar 

  • Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–C581

    CAS  PubMed  Google Scholar 

  • Glass R, Townsend-Nicholson A, Burnstock G (2000) P2 receptors in the thymus: expression of P2X and P2Y receptors in adult rats, an immunohistochemical and in situ hybridisation study. Cell Tissue Res 300:295–306

    Article  CAS  PubMed  Google Scholar 

  • Gonnord P, Delarasse C, Auger R, Benihoud K, Prigent M, Cuif MH, Lamaze C, Kanellopoulos JM (2009) Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 23:795–805

    Article  CAS  PubMed  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    CAS  PubMed  Google Scholar 

  • Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92(3):946–951

    CAS  PubMed  Google Scholar 

  • Heppel LA, Weisman GA, Friedberg I (1985) Permeabilization of transformed cells in culture by external ATP. J Membr Biol 86:189–196

    CAS  PubMed  Google Scholar 

  • Hibell AD, Thompson KM, Xing M, Humphrey PP, Michel AD (2001) Complexities of measuring antagonist potency at P2X(7) receptor orthologs. J Pharmacol Exp Ther 296(3):947–957

    CAS  PubMed  Google Scholar 

  • Humphreys BD, Rice J, Kertesy SB, Dubyak GR (2000) Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem 275(35):26792–26798

    CAS  PubMed  Google Scholar 

  • Iglesias R, Locovei S, Roque AP, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor–pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295(3):C752–C760

    Article  CAS  PubMed  Google Scholar 

  • Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Jamieson GP, Snook MB, Thurlow PJ, Wiley JS (1996) Extracellular ATP causes of loss of L-selectin from human lymphocytes via occupancy of P2Z purinocepters. J Cell Physiol 166(3):637–642

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20:6347–6358

    Article  CAS  PubMed  Google Scholar 

  • Le Stunff H, Raymond MN (2007) P2X7 receptor-mediated phosphatidic acid production delays ATP-induced pore opening and cytolysis of RAW 264.7 macrophages. Cell Signal 19(9):1909–1918

    Article  PubMed  Google Scholar 

  • Liu X, Surprenant A, Mao HJ, Roger S, Xia R, Bradley H, Jiang LH (2008) Identification of key residues coordinating functional inhibition of P2X7 receptors by zinc and copper. Mol Pharmacol 73:252–259

    Article  CAS  PubMed  Google Scholar 

  • Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic Ca2+. FEBS Lett 580(1):239–244

    Article  CAS  PubMed  Google Scholar 

  • Lundy PM, Nelson P, Mi L, Frew R, Minaker S, Vair C, Sawyer TW (2004) Pharmacological differentiation of the P2X7 receptor and the maitotoxin-activated cationic channel. Eur J Pharmacol 487:17–28

    Article  CAS  PubMed  Google Scholar 

  • Markwardt F, Löhn M, Böhm M, Klapperstück M (1997) Purinoreceptor-operated cation channels in human B lymphocytes. J Physiol 498:143–151

    CAS  PubMed  Google Scholar 

  • Michel AD, Kaur R, Chessell IP, Humphrey PP (2000) Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol 130:513–520

    Article  CAS  PubMed  Google Scholar 

  • Mutini C, Falzoni S, Ferrari D, Chiozzi P, Morelli A, Baricordi OR, Collo G, Ricciardi-Castagnoli P, Di Virgilio F (1999) Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 163:1958–1965

    CAS  PubMed  Google Scholar 

  • Nihei OK, de Carvalho AC, Savino W, Alves LA (2000) Pharmacologic properties of P(2Z)/P2X(7) receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 96:996–1005

    CAS  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394

    Article  CAS  PubMed  Google Scholar 

  • Persechini PM, Bisaggio RC, Alves-Neto JL, Coutinho-Silva R (1998) Extracellular ATP in the lymphohematopoietic system: P2Z purinoceptors off membrane permeabilization. Braz J Med Biol Res 31:25–34

    Article  CAS  PubMed  Google Scholar 

  • Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486

    Article  CAS  PubMed  Google Scholar 

  • Roger S, Pelegrin P, Surprenant A (2008) Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28:6393–6401

    Article  CAS  PubMed  Google Scholar 

  • Shemon AN, Sluyter R, Conigrave AD, Wiley JS (2004) Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor. Br J Pharmacol 142:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Sluyter R, Wiley JS (2002) Extracellular adenosine 5′-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. Int Immunol 14:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Smart ML, Gu B, Panchal RG, Wiley J, Cromer B, Williams DA, Petrou S (2003) P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J Biol Chem 278:8853–8860

    Article  CAS  PubMed  Google Scholar 

  • Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4 permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–8888

    CAS  PubMed  Google Scholar 

  • Su TT, Guo B, Rawlings DJ (2002) Emerging roles for PKC isoforms in immune cell function. Mol Interv 2:141–144

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Ogihara K, Sato M, Kitani H (2005) Inhibitory effects of U73122 and U73343 on Ca2+ influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line. Biochim Biophys Acta 1726:177–186

    CAS  PubMed  Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Virginio C, MacKenzie A, North RA, Surprenant A (1999a) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519:335–346

    Article  CAS  PubMed  Google Scholar 

  • Virginio C, MacKenzie E, Rassendren FA, North A, Surprenant A (1999b) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–322

    Article  CAS  PubMed  Google Scholar 

  • Watano T, Matsuoka I, Kimura J (2002) Characteristics of ATP-induced current through P2X7 receptor in NG108-15 cells: unique antagonist sensitivity and lack of pore formation. Jpn J Pharmacol 88:428–435

    Article  CAS  PubMed  Google Scholar 

  • Wiley JS, Gargett CE, Zhang W, Snook MB, Jamieson GP (1998) Partial agonists and antagonists reveal a second permeability state of human lymphocyte P2Z/P2X7 channel. Am J Physiol 275:C1224–C1231

    CAS  PubMed  Google Scholar 

  • Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277:34017–34023

    Article  CAS  PubMed  Google Scholar 

  • Young MT, Pelegrin P, Surprenant A (2006) Identification of Thr283 as a key determinant of P2X7 receptor function. Br J Pharmacol 149:261–268

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Yang M, Ting AT, Logothetis DE (2007) PIP(2) regulates the ionic current of P2X receptors and P2X(7) receptor-mediated cell death. Channels (Austin) 1:46–55

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Andrea Henrique Pons (IOC/FIOCRUZ) for helping us in the initial phase of this work. This work was supported by grants from FAPERJ, PAPES V/CNPq, and the Oswaldo Cruz Institute.

Conflict of interests

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. X. Faria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faria, R.X., Cascabulho, C.M., Reis, R.A.M. et al. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn-Schmied Arch Pharmacol 382, 73–87 (2010). https://doi.org/10.1007/s00210-010-0523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0523-8

Keywords

Navigation