Skip to main content
Log in

Opposite effects of milnacipran, a serotonin norepinephrine reuptake inhibitor, on the levels of nitric oxide and brain-derived neurotrophic factor in mouse brain cortex

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

There is a growing body of evidence demonstrating that changes in the brain levels of nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) are implicated in the pathogenesis of major depression. We report here the effects of subchronic treatment of mice with milnacipran, a serotonin norepinephrine reuptake inhibitor, on the levels of NO and BDNF in mice. In vivo administration of milnacipran (10 mg/kg) for 14 days caused a significant decrease in nitrate and nitrite concentrations in the cerebral cortex and hippocampus, but not in the midbrain. Milnacipran (10 mg/kg, 14 days) also decreased the activity of NO synthase in the cerebral cortex. On the other hand, milnacipran (10 mg/kg, 14 days) increased the levels of BDNF protein and mRNA in the cerebral cortex. These findings suggest that milnacipran has opposite effects on the levels of NO and BDNF in the brain cortex, namely, downregulation of NO and upregulation of BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altieri M, Marini F, Arban R, Vitulli G, Jansson BO (2004) Expression analysis of brain-derived neurotrophic factor (BDNF) mRNA isoforms after chronic and acute antidepressant treatment. Brain Res 1000:148–155

    Article  CAS  PubMed  Google Scholar 

  • Araujo IM, Carvalho CM (2005) Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurol Disord 4:319–324

    Article  CAS  PubMed  Google Scholar 

  • Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, Goka E (2006) Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry 30:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Basterzi AD, Yazici K, Aslan E, Delialioglu N, Tasdelen B, Tot Acar S, Yazici A (2009) Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 33:281–285

    Article  CAS  PubMed  Google Scholar 

  • Bobrovskaya L, Gelain DP, Gilligan C, Dickson PW, Dunkley PR (2007a) PACAP stimulates the sustained phosphorylation of tyrosine hydroxylase at serine 40. Cell Signal 19:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Bobrovskaya L, Gilligan C, Bolster EK, Flaherty JJ, Dickson PW, Dunkley PR (2007b) Sustained phosphorylation of tyrosine hydroxylase at serine 40: a novel mechanism for maintenance of catecholamine synthesis. J Neurochem 100:479–489

    Article  CAS  PubMed  Google Scholar 

  • Canossa M, Giordano E, Cappello S, Guarnieri C, Ferri S (2002) Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc Natl Acad Sci U S A 99:3282–3287

    Article  CAS  PubMed  Google Scholar 

  • Cardenas A, Moro MA, Hurtado O, Leza JC, Lizasoain I (2005) Dual role of nitric oxide in adult neurogenesis. Brain Res Brain Res Rev 50:1–6

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Russo-Neustadt AA (2007) Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci 81:1280–1290

    Article  CAS  PubMed  Google Scholar 

  • Coppell AL, Pei Q, Zetterstrom TS (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910

    Article  CAS  PubMed  Google Scholar 

  • Dias BG, Banerjee SB, Duman RS, Vaidya VA (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45:553–563

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 25:3638–3650

    Article  CAS  PubMed  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658

    CAS  PubMed  Google Scholar 

  • Fujimaki K, Morinobu S, Duman RS (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22:42–51

    Article  CAS  PubMed  Google Scholar 

  • Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Waeber C, Huang PL, Fujii M, Fishman MC, Moskowitz MA (1996) Brain distribution of nitric oxide synthase in neuronal or endothelial nitric oxide synthase mutant mice using [3H]L-NG-nitro-arginine autoradiography. Neuroscience 75:881–890

    Article  CAS  PubMed  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    Article  CAS  PubMed  Google Scholar 

  • Joca SR, Ferreira FR, Guimaraes FS (2007) Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 10:227–249

    Article  CAS  PubMed  Google Scholar 

  • Joca SR, Guimaraes FS (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl) 185:298–305

    Article  CAS  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  CAS  PubMed  Google Scholar 

  • Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Tan RX (2001) Fluoxetine inhibits dendrite atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model. Acta Pharmacol Sin 22:865–870

    CAS  PubMed  Google Scholar 

  • Maher P, Schubert D (2000) Signaling by reactive oxygen species in the nervous system. Cell Mol Life Sci 57:1287–1305

    Article  CAS  PubMed  Google Scholar 

  • McAllister AK (1999) Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity? Proc Natl Acad Sci U S A 96:13600–13602

    Article  CAS  PubMed  Google Scholar 

  • Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G, Riva MA (2006) Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 9:307–317

    Article  CAS  PubMed  Google Scholar 

  • Moret C, Charveron M, Finberg JP, Couzinier JP, Briley M (1985) Biochemical profile of midalcipran (F 2207), 1-phenyl-1-diethyl-aminocarbonyl-2-aminomethyl-cyclopropane (Z) hydrochloride, a potential fourth generation antidepressant drug. Neuropharmacology 24:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, Nakata S, Tanimoto A, Wang KY, Ueta Y, Sasaguri Y, Nakashima Y, Yanagihara N (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Natl Acad Sci U S A 102:10616–10621

    Article  CAS  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    CAS  PubMed  Google Scholar 

  • Oliveira RM, Guimaraes FS, Deakin JF (2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 41:333–341

    CAS  PubMed  Google Scholar 

  • Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopov G (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 100:9566–9571

    Article  CAS  PubMed  Google Scholar 

  • Pinnock SB, Herbert J (2008) Brain-derived neurotropic factor and neurogenesis in the adult rat dentate gyrus: interactions with corticosterone. Eur J NeuroSci 27:2493–2500

    Article  PubMed  Google Scholar 

  • Puozzo C, Albin H, Vincon G, Deprez D, Raymond JM, Amouretti M (1998) Pharmacokinetics of milnacipran in liver impairment. Eur J Drug Metab Pharmacokinet 23:273–279

    Article  CAS  PubMed  Google Scholar 

  • Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356

    Article  CAS  PubMed  Google Scholar 

  • Segal RA (2003) Selectivity in neurotrophin signaling: theme and variations. Annu Rev Neurosci 26:299–330

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532

    Article  CAS  PubMed  Google Scholar 

  • Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Stenger A, Couzinier JP, Briley M (1987) Psychopharmacology of midalcipran, 1-phenyl-1-diethyl-amino-carbonyl-2-aminomethylcyclopropane hydrochloride (F 2207), a new potential antidepressant. Psychopharmacology (Berl) 91:147–153

    Article  CAS  Google Scholar 

  • Sugimoto Y, Tagawa N, Kobayashi Y, Hotta Y, Yamada J (2007) Effects of the serotonin and noradrenaline reuptake inhibitor (SNRI) milnacipran on marble burying behavior in mice. Biol Pharm Bull 30:2399–2401

    Article  CAS  PubMed  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959:128–134

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Yamada K, Han D, Nabeshima T, Enikolopov G, Carnahan J, Nawa H (1999) Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons. Eur J NeuroSci 11:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Yildiz F, Erden BF, Ulak G, Utkan T, Gacar N (2000) Antidepressant-like effect of 7-nitroindazole in the forced swimming test in rats. Psychopharmacology (Berl) 149:41–44

    Article  CAS  Google Scholar 

  • Yoshimura R, Mitoma M, Sugita A, Hori H, Okamoto T, Umene W, Ueda N, Nakamura J (2007) Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 31:1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103:1843–1854

    Article  CAS  PubMed  Google Scholar 

  • Zhu XJ, Hua Y, Jiang J, Zhou QG, Luo CX, Han X, Lu YM, Zhu DY (2006) Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 141:827–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Sei Nakata and Tsuyoshi Morishita (Department of 2nd Medicine, School of Medicine, University of Occupational and Environmental Health) for their helpful advice on the assay of NOx and NOS activity. We gratefully thank Dr. Yuko Shinohara (Ube Industries, Ltd., Ube, Japan) for her help of isolation of the mice brain areas. This research was supported, in part, by a special grant from Asahi Kasei Corporation (Tokyo, Japan) to NY. We are grateful to Asahi Kasei Corporation (Tokyo, Japan) for the generous gift of milnacipran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Yanagihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikenouchi-Sugita, A., Toyohira, Y., Yoshimura, R. et al. Opposite effects of milnacipran, a serotonin norepinephrine reuptake inhibitor, on the levels of nitric oxide and brain-derived neurotrophic factor in mouse brain cortex. Naunyn-Schmied Arch Pharmacol 380, 479–486 (2009). https://doi.org/10.1007/s00210-009-0467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0467-z

Keywords

Navigation