Skip to main content

Advertisement

Log in

Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

One site of action of the anticonvulsant, analgesic, and anxiolytic drugs gabapentin and pregabalin is the α2δ-subunit of voltage-sensitive Ca2+ channels (VSCC). We therefore analyzed the effects of gabapentin and pregabalin on K+-evoked release of 3H-γ-aminobutyric acid (GABA) and 3H-glutamate from superfused human neocortical synaptosomes. These neurotransmitters are released by Ca2+-dependent exocytosis and by Ca2+-independent uptake reversal. When a GABA transport inhibitor was present throughout superfusion to isolate exocytotic conditions, gabapentin and pregabalin (100 μM each) reduced K+-evoked 3H-GABA release by 39% and 47%, respectively. These effects were antagonized by the α2δ-ligand l-isoleucine (1 μM) suggesting the α2δ-subunit of terminal VSCC to mediate the reduction of exocytosis. Both drugs had no effect on exocytotic 3H-glutamate release and also failed to modulate the release of 3H-GABA and 3H-glutamate caused by reversed uptake in the absence of external Ca2+. Thus, an inhibition of glutamate release by gabapentin and pregabalin as main anticonvulsant principle is not supported by our experiments. An anticonvulsant mode of action of both drugs may be the reduction of a proconvulsant exocytotic GABA release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen NJ, Karadottir R, Attwell D (2004) Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflügers Arch-Eur J Physiol 449:132–142

    Article  CAS  Google Scholar 

  • Bayer K, Ahmadi S, Zeilhofer HU (2004) Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of PQ-type Ca2+ channels. Neuropharmacology 46:743–749

    Article  PubMed  CAS  Google Scholar 

  • Bedwani JR, Songra AK, Trueman CJ (1984) Influence of aminoxyacetic acid on the potassium-evoked release of 3H-γ-aminobutyric acid from slices of rat cerebral cortex. Neurochem Res 9:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Belliotti T, Ekhato IV, Capiris T, Kinsora J, Vartanian MG, Field M, Meltzer LT, Heffner T, Schwarz JB, Taylor CP, Thorpe A, Wise L, Su T-Z, Weber ML, Wustrow DJ (2005) Structure-activity relationships of pregabalin and analogs that target the alpha2-delta protein. J Med Chem 48:2294–2307

    Article  PubMed  CAS  Google Scholar 

  • Bian F, Li Z, Offord JD, Davis MD, McCormick JA, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdale, and spinal cord: an ex vivo audioradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80

    Article  PubMed  CAS  Google Scholar 

  • Brawek B, Löffler M, Dooley DJ, Weyerbrock A, Feuerstein TJ (2008) Differential modulation of K+-evoked 3H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn-Schmiedeberg’s Arch Pharmacol 376:301–307

    Article  CAS  Google Scholar 

  • Brown JT, Randall A (2005) Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse 55:262–269

    Article  PubMed  CAS  Google Scholar 

  • Cohen I, Navarro V, Le Duigou C, Miles R (2003) Mesial temporal lobe epilepsy: a pathological replay of developmental mechanisms? Biol Cell 95:329–333

    Article  PubMed  Google Scholar 

  • Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleichner L, Varney MA, Gu G (2005) Differential distribution of voltage-gated calcium channel alpha-2 delta (α2δ) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol 491:246–269

    Article  PubMed  CAS  Google Scholar 

  • Cossart R, Bernard C, Ben-Ari Y (2005) Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signaling in epilepsies. Trends Neurosci 28:108–115

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RSG (2004) Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Eur J Neuosci 20:1566–1576

    Article  Google Scholar 

  • Dooley DJ, Donovan CM, Pugsley TA (2000a) Stimulus-dependent modulation of 3H-norepinephrine release from rat neocortical slices by gabapentin and pregabalin. J Pharmacol Exp Ther 295:1086–1093

    PubMed  CAS  Google Scholar 

  • Dooley DJ, Mieske CA, Borosky SA (2000b) Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 280:107–110

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Taylor CP, Donevan S, Feltner D (2007) Ca2+ channel α2δ-ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28:75–82

    Article  PubMed  CAS  Google Scholar 

  • Götz E, Feuerstein TJ, Lais A, Meyer DK (1993) Effects of gabapentin on release of γ-aminobutyric acid from slices of rat neostriatum. Drug Res 43:636–638

    Google Scholar 

  • Gulledge AT, Stuart GT (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309

    Article  PubMed  CAS  Google Scholar 

  • Honmou O, Oyelese AA, Kocsis JD (1995) The anticonvulsant gabapentin enhances promoted release of GABA in hippocampus: a field potential analysis. Brain Res 692:273–277

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the maleate–aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 930:173–178

    Article  PubMed  CAS  Google Scholar 

  • Lynch JJ, Honore P, Anderson DJ, Bunnelle WH, Mortell KH, Zhong C, Wade CL, Zhu CZ, Xu H, Marsh KC, Lee C-H, Jarvis MF, Gopalakrishnan M (2006) (L)-phenylglycine, but not necessarily other α2δ-subunit voltage-gated calcium channels ligands, attenuates neuropathic pain in rats. Pain 125:136–142

    Article  PubMed  CAS  Google Scholar 

  • Luer MS, Hamani C, Dujovni M, Gidal B, Cwik M, Deyo K, Fischer JH (1999) Saturable transport of gabapentin at the blood brain barrier. Neurol Res 21:559–562

    PubMed  CAS  Google Scholar 

  • Nicholls DG (1989) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (1993) The glutamatergic nerve terminal. Eur J Biochem 212:613–631

    Article  PubMed  CAS  Google Scholar 

  • Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragazzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci 103:8465–8468

    Article  PubMed  CAS  Google Scholar 

  • Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Sala R, Fassio A, Rossetto O, Bonanno G (2000) Entrapping of impermeable probes of different size into nonpermeabilized synaptosomes as a method to study presynaptic mechanisms. J Neurochem 74:423–431

    Article  PubMed  CAS  Google Scholar 

  • Raiteri L, Stigliani S, Zedda L, Raiteri M, Bonanno G (2002) Multiple mechanisms of transmitter release evoked by “pathologically” elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium. J Neurochem 80:706–714

    Article  PubMed  CAS  Google Scholar 

  • Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Rock DM, Kelly KM, Macdonald RL (1993) Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res 16:89–98

    Article  PubMed  CAS  Google Scholar 

  • Santos MS, Rodriguez R, Carvalho AP (1992) Effect of depolarizing agents on the release of Ca2+-independent and Ca2+-dependent release of 3H-GABA from sheep brain synaptosomes. Biochem Pharmacol 44:301–308

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TB, Beck H, Steinhauser C, Schramm J, Elger CE (1998) Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39:355–363

    Article  PubMed  CAS  Google Scholar 

  • Sills GJ (2006) The mechanism of action of gabapentin and pregabalin. Curr Opin Pharmacol 6:108–113

    Article  PubMed  CAS  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1998) Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37:83–91

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DV, Brown JP, Dooley D, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150

    Article  PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996a) Comparison of the uptake of [3H]-gabapentin with the uptake of L-[3H]-leucine into rat brain synaptosomes. Br J Pharmacol 118:449–156

    PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996b) Comparison of the audiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in the brain. Br J Pharmacol 118:457–465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Feuerstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brawek, B., Löffler, M., Weyerbrock, A. et al. Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes. Naunyn-Schmied Arch Pharmacol 379, 361–369 (2009). https://doi.org/10.1007/s00210-008-0370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0370-z

Keywords

Navigation