Skip to main content
Log in

Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize the pharmacodynamic, pharmacokinetic, and adverse-effect profiles of retigabine (RTG) in combination with carbamazepine (CBZ), lamotrigine (LTG), and valproate (VPA). The isobolographic analysis for parallel and nonparallel dose–response effects was used in the mouse maximal electroshock seizure (MES) model for evaluation of pharmacodynamic interaction. Potential adverse-effect profiles of interactions of RTG with CBZ, LTG, and VPA at the fixed ratio of 1:1 in the MES test were evaluated in the chimney (motor performance), passive avoidance (long-term memory), and grip strength (muscular strength) tests. Free plasma and total brain concentrations of CBZ, LTG, and VPA were determined by immunofluorescence and chromatography to assess pharmacokinetic interaction. In the MES model, RTG administered singly had its dose–response relationship curve (DRRC) parallel to that for VPA and nonparallel to that for CBZ and LTG. With isobolography for parallel DRRCs, the combination of RTG with VPA at fixed ratios of 1:3, 1:1, and 3:1 exerted supraadditive (synergistic) interaction. Isobolography for nonparallel DRRCs revealed that the combinations of RTG with CBZ and LTG at the fixed ratio of 1:1 produced additive interaction. In all combinations, neither motor coordination, long-term memory, nor muscular strength were affected. Only the combination of RTG with VPA at the fixed ratio of 3:1 was complicated by a pharmacokinetic increase in both free plasma and total brain VPA concentrations. All remaining combinations of RTG with VPA, CBZ, and LTG were pharmacodynamic in nature. RTG synergistically interacted with VPA and exerted additive interaction with CBZ and LTG in the mouse MES model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armand V, Rundfeldt C, Heinemann U (1999) Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by 4-aminopyridine in rat entorhinal cortex hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 359:33–39

    Article  CAS  Google Scholar 

  • Armand V, Rundfeldt C, Heinemann U (2000) Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by low magnesium in rat entorhinal cortex hippocampal slices. Epilepsia 41:28–33

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141 (Erratum published in 1989, Pharmacol Rev 41:422)

    PubMed  CAS  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle méthode simple pour explorer l’action tranquilisante: le test de la cheminée. Med Exp (Basel) 3:81–84

    Article  CAS  Google Scholar 

  • Bourgeois BF (1988) Combination of valproate and ethosuximide: antiepileptic and neurotoxic interaction. J Pharmacol Exp Ther 247:1128–1132

    PubMed  CAS  Google Scholar 

  • Bowdle AT, Patel IH, Levy RH, Wilensky AJ (1980) Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 28:486–492

    PubMed  CAS  Google Scholar 

  • Brodie MJ, Schachter SC (2001) Fast facts. Epilepsy, 2nd edn. Health, Oxford

    Google Scholar 

  • Brodie MJ, Yuen AW (1997) Lamotrigine substitution study: evidence for synergism with sodium valproate? 105 Study Group. Epilepsy Res 26:423–432

    Article  PubMed  CAS  Google Scholar 

  • Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55

    Article  PubMed  CAS  Google Scholar 

  • Czapinski P, Blaszczyk B, Czuczwar SJ (2005) Mechanisms of action of antiepileptic drugs. Curr Top Med Chem 5:3–14

    Article  PubMed  CAS  Google Scholar 

  • Dailey JW, Cheong JH, Ko KH, Adams-Curtis LE, Jobe PC (1995) Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett 195:77–80

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modeling in translational drug research. Trends Pharmacol Sci 29:186–191

    Article  PubMed  CAS  Google Scholar 

  • De Sarro G, Di Paola ED, Conte G, Pasculli MP, De Sarro A (2001) Influence of retigabine on the anticonvulsant activity of some antiepileptic drugs against audiogenic seizures in DBA/2 mice. Naunyn-Schmiedeberg’s Arch Pharmacol 363:330–336

    Article  Google Scholar 

  • Deckers CLP, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, Van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 41:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Deckers CLP, Genton P, Sills GJ, Schmidt D (2003) Current limitations of antiepileptic drug therapy: a conference review. Epilepsy Res 53:1–17

    Article  PubMed  CAS  Google Scholar 

  • Dost R, Rundfeldt C (2000) The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca++ and low Mg++ model in the hippocampal slice preparation. Epilepsy Res 38:53–66

    Article  PubMed  CAS  Google Scholar 

  • Ebert U, Brandt C, Löscher W (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95

    Article  PubMed  Google Scholar 

  • Ferrie CD, Robinson RO, Knott C, Panayiotopoulos CP (1995) Lamotrigine as an add-on drug in typical absence seizures. Acta Neurol Scand 91:200–202

    Article  PubMed  CAS  Google Scholar 

  • Ferron GM, Sachdeo R, Partiot A, Fritz T, Althouse S, Troy S (2001) Pharmacokinetic interaction between valproic acid, topiramate, phenytoin, or carbamazepine and retigabine in epileptic patients. Clin Pharmacol Ther 69(Suppl 2):18 (Abstract)

    Google Scholar 

  • Ferron GM, Paul J, Fruncillo R, Richards L, Knebel N, Getsy J, Troy S (2002) Multiple-dose, linear, dose-proportional pharmacokinetics of retigabine in healthy volunteers. J Clin Pharmacol 42:175–182

    Article  PubMed  CAS  Google Scholar 

  • Ganguly A, Wolf HH, White HS (1995) Investigational anticonvulsant D-23129 inhibits limbic behavioural seizures in hippocampal kindled rats. Epilepsia 36(Suppl 4):49 (Abstract)

    Google Scholar 

  • Gidal BE, Pitterle ME, Spencer NW, Maly MM (1995) Relationship between valproic acid dosage, plasma concentration and clearance in adult monotherapy patients with epilepsy. J Clin Pharm Ther 20:215–219

    Article  PubMed  CAS  Google Scholar 

  • Gomez Bellver MJ, Garcia Sanchez MJ, Alonso Gonzalez AC, Santos Buelga D, Dominguez-Gil A (1993) Plasma protein binding kinetics of valproic acid over a broad dosage range: therapeutic implications. J Clin Pharm Ther 18:191–197

    Article  PubMed  CAS  Google Scholar 

  • Grabovsky Y, Tallarida RJ (2004) Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. J Pharmacol Exp Ther 310:981–986

    Article  PubMed  CAS  Google Scholar 

  • Gram L, Flachs H, Würtz-Jorgensen A, Parnas J, Andersen B (1979) Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia 20:303–311

    Article  PubMed  CAS  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    PubMed  CAS  Google Scholar 

  • Hermann R, Ferron GM, Erb K, Knebel N, Ruus P, Paul J, Richards L, Cnota HP, Troy S (2003) Effects of age and sex on the disposition of retigabine. Clin Pharmacol Ther 73:61–70

    Article  PubMed  CAS  Google Scholar 

  • Hetka R, Rundfeldt C, Heinemann U, Schmitz D (1999) Retigabine strongly reduces repetitive firing in rat entorhinal cortex. Eur J Pharmacol 386:165–171

    Article  PubMed  CAS  Google Scholar 

  • Hiller A, Nguyen N, Strassburg CP, Li Q, Jainta H, Pechstein B, Ruus P, Engel J, Tukey RH, Kronbach J (1999) Retigabine N-glucuronidation and its potential role in enterohepatic circulation. Drug Metab Dispos 27:605–612

    PubMed  CAS  Google Scholar 

  • Jonker DM, Voskuyl RA, Danhof M (2004) Pharmacodynamic analysis of the anticonvulsant effects of tiagabine and lamotrigine in combination in the rat. Epilepsia 45:424–435

    Article  PubMed  CAS  Google Scholar 

  • Jonker DM, Visser SA, van der Graaf PH, Voskuyl RA, Danhof M (2005) Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol Ther 106:1–18

    Article  PubMed  CAS  Google Scholar 

  • Jonker DM, Voskuyl RA, Danhof M (2007) Synergistic combinations of anticonvulsant agents: what is the evidence from animal experiments? Epilepsia 48:412–434

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ (2000a) Epilepsy after the first drug fails: substitution or add-on? Seizure 9:464–468

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ (2000b) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  PubMed  CAS  Google Scholar 

  • Leach JP, Brodie MJ (1994) Synergism with GABAergic drugs in refractory epilepsy. Lancet 343:1650

    Article  PubMed  CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose–effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  • Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (2004) New horizons in the development of antiepileptic drugs: the search for new targets. Epilepsy Res 60:77–159

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Schmidt D (2006) New Horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 69:183–272

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Luszczki JJ (2007) Isobolographic analysis of interaction between drugs with nonparallel dose–response relationship curves: a practical application. Naunyn-Schmiedeberg’s Arch Pharmacol 375:105–114

    Article  CAS  Google Scholar 

  • Luszczki JJ (2008) Interactions of tiagabine with ethosuximide in the mouse pentylenetetrazole-induced seizure model: an isobolographic analysis for non-parallel dose–response relationship curves. Naunyn-Schmiedeberg’s Arch Pharmacol. doi:10.1007/s00210-008-0305-8

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics—a comparative study. Epilepsy Res 56:27–42

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn-Schmiedeberg’s Arch Pharmacol 369:434–446

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2006) Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis. Naunyn-Schmiedeberg’s Arch Pharmacol 374:51–64

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2007) Isobolographic characterization of interactions between vigabatrin and tiagabine in two experimental models of epilepsy. Prog Neuro-psychopharmacol Biol Psychiatry 31:529–538

    Article  CAS  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003a) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003b) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1001–1011

    Google Scholar 

  • Luszczki JJ, Wojcik-Cwikla J, Andres MM, Czuczwar SJ (2005) Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology 30:958–973

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ (2006) Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Naunyn-Schmiedeberg’s Arch Pharmacol 373:169–181

    Article  CAS  Google Scholar 

  • Luszczki JJ, Andres-Mach MM, Ratnaraj N, Patsalos PN, Czuczwar SJ (2007) Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia 48:806–815

    Article  PubMed  CAS  Google Scholar 

  • Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA (2000) Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 58:253–262

    PubMed  CAS  Google Scholar 

  • May T, Rambeck B (1985) Serum concentrations of valproic acid: influence of dose and comedication. Ther Drug Monit 7:387–390

    Article  PubMed  CAS  Google Scholar 

  • Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236

    PubMed  CAS  Google Scholar 

  • Mora G, Tapia R (2005) Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 30:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Perucca E (1995) Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl 162:31–34

    PubMed  CAS  Google Scholar 

  • Pisani F, Oteri G, Russo MF, Di Perri R, Perucca E, Richens A (1999) The efficacy of valproate-lamotrigine comedication in refractory complex partial seizures: evidence for a pharmacodynamic interaction. Epilepsia 40:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Porter RJ, Partiot A, Sachdeo R, Nohria V, Alves WM, 205 Study Group (2007a) Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 68:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Porter RJ, Nohria V, Rundfeldt C (2007b) Retigabine. Neurotherapeutics 4:149–154

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Rostock A, Tober C, Rundfeldt C, Bartsch R, Engel J, Polymeropoulos EE, Kutscher B, Löscher W, Hönack D, White HS, Wolf HH (1996) D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 23:211–223

    Article  PubMed  CAS  Google Scholar 

  • Rowan AJ, Meijer JW, de Beer-Pawlikowski N, van der Geest P, Meinardi H (1983) Valproate–ethosuximide combination therapy for refractory absence seizures. Arch Neurol 40:797–802

    PubMed  CAS  Google Scholar 

  • Rundfeldt C (1997) The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 336:243–249

    Article  PubMed  CAS  Google Scholar 

  • Rundfeldt C (1999) Characterization of the K+ channel opening effect of the anticonvulsant retigabine in PC12 cells. Epilepsy Res 35:99–107

    Article  PubMed  CAS  Google Scholar 

  • Rundfeldt C, Netzer R (2000a) The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 282:73–76

    Article  PubMed  CAS  Google Scholar 

  • Rundfeldt C, Netzer R (2000b) Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung 50:1063–1070

    PubMed  CAS  Google Scholar 

  • Sachdeo RC, Ferron GM, Partiot AM, Biton V, Rosenfeld WE, Porter RJ, Fritz T, Althouse S, Troy SM (2001) An early determination of drug–drug interaction between valproic acid, phenytoin, carbamazepine or topiramate and retigabine in epileptic patients. Neurology 56:A331–A332 (Abstract)

    Google Scholar 

  • Sills GJ, Rundfeldt C, Butler E, Forrest G, Thompson GG, Brodie MJ (2000) A neurochemical study of the novel antiepileptic drug retigabine in mouse brain. Pharmacol Res 42:553–557

    Article  PubMed  CAS  Google Scholar 

  • Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    Article  PubMed  CAS  Google Scholar 

  • Stephen LJ, Brodie MJ (2002) Seizure freedom with more than one antiepileptic drug. Seizure 11:349–351

    Article  PubMed  Google Scholar 

  • Stephen LJ, Sills GJ, Brodie MJ (1998) Lamotrigine and topiramate may be a useful combination. Lancet 351:958–959

    PubMed  CAS  Google Scholar 

  • Straub H, Köhling R, Höhling J, Rundfeldt C, Tuxhorn I, Ebner A, Wolf P, Pannek H, Speckmann E (2001) Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res 44:155–165

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist A, Tomson T, Lundkvist B (1997) Pharmacokinetics of valproic acid in patients with juvenile myoclonic epilepsy on monotherapy. Ther Drug Monit 19:153–159

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose–effect data analysis. Chapman and Hall, Boca Raton, USA

    Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (2007) Interactions between drugs and occupied receptors. Pharmacol Ther 113:197–209

    Article  PubMed  CAS  Google Scholar 

  • Tober C, Rostock A, Rundfeldt C, Bartsch R (1996) D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol 303:163–169

    Article  PubMed  CAS  Google Scholar 

  • van Rijn CM, Willems-van Bree E (2003) Synergy between retigabine and GABA in modulating the convulsant site of the GABAA receptor complex. Eur J Pharmacol 464:95–100

    Article  PubMed  CAS  Google Scholar 

  • Venault P, Chapouthier G, de Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature 321:864–866

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, To H, Ohdo S, Higuchi S, Aoyama T (1997) Population-based investigation of valproic acid relative clearance using nonlinear mixed effects modeling: influence of drug–drug interaction and patient characteristics. J Clin Pharmacol 37:1160–1167

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from Valeant Pharmaceuticals International (Aliso Viejo, CA, USA). The generous gifts of carbamazepine from Polfa (Starogard, Poland), retigabine from Valeant Pharmaceuticals International (Aliso Viejo, CA, USA), and valproate magnesium from ICN-Polfa S.A. (Rzeszow, Poland) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J., Wu, J.Z., Raszewski, G. et al. Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. Naunyn-Schmied Arch Pharmacol 379, 163–179 (2009). https://doi.org/10.1007/s00210-008-0349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0349-9

Keywords

Navigation