Skip to main content
Log in

Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study examined the interaction characteristics between loreclezole (LCZ) and various conventional antiepileptic drugs (phenytoin - PHT, carbamazepine - CBZ, valproate - VPA and phenobarbital - PB) in the mouse maximal electroshock (MES)-induced seizure model using isobolographic analysis. Drug-related adverse effects were ascertained by use of the chimney test (motor impairment) and the step-through passive avoidance task (learning and retrieval). It was observed that the combination of LCZ with VPA or PB, at the fixed ratio of 1:1, was supra-additive (synergistic) and the combination of LCZ with CBZ, at all fixed ratios tested (1:3, 1:1 and 3:1), was supra-additive against electroconvulsions. The remaining combinations evaluated, i.e., LCZ with PB or VPA at fixed ratios of 1:3 and 3:1, as well as all fixed-ratio combinations between LCZ and PHT, were additive in the MES test in mice. Pharmacokinetic characterization revealed that LCZ significantly increased both free plasma and brain concentrations of CBZ and PHT, but was without effect on PB. Moreover, a bi-directional pharmacokinetic interaction between LCZ and VPA was observed in that while LCZ increased free plasma, but not total brain VPA concentrations, VPA increased the total brain, but not free plasma LCZ concentrations. Adverse-effect testing revealed that for all antiepileptic drug combinations neither motor performance nor long-term memory was altered. Of the drug combinations investigated, only that of LCZ and PB at the fixed ratio of 1:1 was not associated with any pharmacokinetic interactions, and thus it may be concluded that the supra-additive (synergistic) isobolographic interaction was pharmacodynamic in nature. Furthermore, the fact that LCZ and PB have similar mechanisms of action would suggest that drugs with similar mechanisms of action may provide rational polytherapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashton D, Fransen J, Heeres J, Clincke GH, Janssen PA (1992) In vivo studies on the mechanism of action of the broad spectrum anticonvulsant loreclezole. Epilepsy Res 11:27–36

    Article  PubMed  CAS  Google Scholar 

  • Ates N, Van Luijtelaar EL, Drinkenburg WH, Vossen JM, Coenen AM (1992) Effects of loreclezole on epileptic activity and on EEG and behaviour in rats with absence seizures. Epilepsy Res 13:43–48

    Article  PubMed  CAS  Google Scholar 

  • Barker JL, McBurney RN (1979) Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons. Proc R Soc Lond B Biol Sci 206:319–327

    Article  PubMed  CAS  Google Scholar 

  • Besag FM, Berry DJ, Pool F, Newbery JE, Subel B (1998) Carbamazepine toxicity with lamotrigine: pharmacokinetic or pharmacodynamic interaction? Epilepsia 39:183–187

    Article  PubMed  CAS  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle méthode simple pour explorer l’action tranquilisante: le test de la cheminée. Med Exp (Basel) 3:81–84

    Article  CAS  Google Scholar 

  • Borowicz KK, Kleinrok Z, Czuczwar SJ (2000) The AMPA/kainate receptor antagonist, LY 300164, increases the anticonvulsant effects of diazepam. Naunyn Schmiedebergs Arch Pharmacol 361:629–635

    Article  PubMed  CAS  Google Scholar 

  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ (2002) Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice—an isobolographic analysis. Epilepsia 43:956–963

    Article  PubMed  CAS  Google Scholar 

  • Borowicz KK, Sawiniec A, Czuczwar SJ (2004) Interaction of loreclezole with conventional antiepileptic drugs in amygdala-kindled rats. Eur Neuropsychopharmacol 14:251–257

    Article  PubMed  CAS  Google Scholar 

  • Cadart M, Marchand S, Pariat C, Bouquet S, Couet W (2002) Ignoring pharmacokinetics may lead to isoboles misinterpretation: illustration with the norfloxacin-theophylline convulsant interaction in rats. Pharm Res 19:209–214

    Article  PubMed  CAS  Google Scholar 

  • Czuczwar SJ, Borowicz KK (2002) Polytherapy in epilepsy: the experimental evidence. Epilepsy Res 52:15–23

    Article  PubMed  CAS  Google Scholar 

  • De Beukelaar F, Tritsmans L (1991) Loreclezole. In: Pisani F, Perucca E, Avanzini G, Richens A (eds) New Antiepileptic Drugs. (Epilepsy Research Suppl. 3). Elsevier Science Publishers, Amsterdam, pp 125–128

    Google Scholar 

  • Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, Van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanism of action: the evidence reviewed. Epilepsia 41:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Deckers CL, Genton P, Sills GJ, Schmidt D (2003) Current limitations of antiepileptic drug therapy: a conference review. Epilepsy Res 53:1–17

    Article  PubMed  CAS  Google Scholar 

  • Della Paschoa OE, Hoogerkamp A, Edelbroek PM, Voskuyl RA, Danhof M (2000) Pharmacokinetic-pharmacodynamic correlation of lamotrigine, flunarizine, loreclezole, CGP40116 and CGP39551 in the cortical stimulation model. Epilepsy Res 40:41–52

    Article  PubMed  CAS  Google Scholar 

  • Donnelly JL, Macdonald RL (1996) Loreclezole enhances apparent desensitization of recombinant GABAA receptor currents. Neuropharmacology 35:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Gasior M, Ungard JT, Witkin JM (1999) Preclinical evaluation of newly approved and potential antiepileptic drugs against cocaine-induced seizures. J Pharmacol Exp Ther 290:1148–1156

    PubMed  CAS  Google Scholar 

  • Genton P, Roger J (1997) Antiepileptic drug monotherapy versus polytherapy: a historical perspective. Epilepsia 38(Suppl.5):S2–S5

    Article  Google Scholar 

  • Ghiani CA, Tuligi G, Maciocco E, Serra M, Sanna E, Biggio G (1996) Biochemical evaluations of the effects of loreclezole and propofol on the GABAA receptor in rat brain. Biochem Pharmacol 51:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Glantz SA, Slinker BK (2001) Primer of applied regression & analysis of variance. 2nd ed. McGraw-Hill Inc., New York

    Google Scholar 

  • Jozwiak S, Terczynski A (2000) Open study evaluating lamotrigine efficacy and safety in add-on treatment and consecutive monotherapy in patients with carbamazepine- or valproate-resistant epilepsy. Seizure 9:486–492

    Article  PubMed  CAS  Google Scholar 

  • Krämer G (1997) The limitations of antiepileptic drug monotherapy. Epilepsia 38(Suppl.5):S9–S13

    Article  Google Scholar 

  • Kwan P, Brodie MJ (2000a) Early identification of refractory epilepsy. New Engl J Med 342:314–319

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ (2000b) Epilepsy after the first drug fails: substitution or add-on? Seizure 9:464–468

    Article  PubMed  CAS  Google Scholar 

  • Leppik IE (2001) Antiepileptic drugs. In: Leppik IE (ed) Contemporary diagnosis and management of the patients with epilepsy. 5th edition. Handbooks in Health Care Co., Newton, Pennsylvania, pp 74–116

    Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  • Lolin YI, Ratnaraj N, Hjelm M, Patsalos PN (1994) Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid: Phenytoin. Epilepsy Res 19:99–110

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 9:1–10

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    Article  PubMed  Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics-a comparative study. Epilepsy Res 56:27–42

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004a) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn Schmiedeberg’s Arch Pharmacol 369:434–446

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004b) Three-dimensional isobolographic analysis of interactions between lamotrigine and clonazepam in maximal electroshock-induced seizures in mice. Naunyn-Schmiedeberg’s Arch Pharmacol 370:369–380

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2005a) Interaction between lamotrigine and felbamate in the maximal electroshock-induced seizures in mice: an isobolographic analysis. Eur Neuropsychopharmacol 15:133–142

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2005b) How significant is the difference between drug doses influencing the threshold for electroconvulsions? Pharmacol Rep 57:782–786

    PubMed  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003a) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003b) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Swiader M, Parada-Turska J, Czuczwar SJ (2003c) Tiagabine synergistically interacts with gabapentin in the electroconvulsive threshold test in mice. Neuropsychopharmacology 28:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003d) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Beh 75:319–327

    Article  CAS  Google Scholar 

  • Luszczki JJ, Wojcik-Cwikla J, Andres M, Czuczwar SJ (2005a) Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology 30:958–973

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ (2005b). Pharmacodynamic and/or pharmacokinetic characteristics of interactions between loreclezole and four conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: An isobolographic analysis. Epilepsy Behav 7:639–651

    Article  PubMed  Google Scholar 

  • MacDonald RL, Rogers CJ, Twyman RE (1989) Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. J Physiol 417:483–500

    PubMed  CAS  Google Scholar 

  • Parada J, Czuczwar SJ, Turski WA (1992) NBQX does not affect learning and memory tasks in mice: a comparison with D-CPPene and ifenprodil. Brain Res Cogn Brain Res 1:67–71

    Article  PubMed  CAS  Google Scholar 

  • Parada-Turska J, Turski WA (1990) Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-D-aspartate receptors in learning and memory tasks. Neuropharmacology 29:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Patsalos PN (2005) Anti-epileptic drug interactions. A clinical guide. Clarius Press, Guildford, UK

    Google Scholar 

  • Patsalos PN, Perucca E (2003a) Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2:347–356

    Article  PubMed  CAS  Google Scholar 

  • Patsalos PN, Perucca E (2003b) Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2:473–481

    Article  PubMed  CAS  Google Scholar 

  • Patsalos PN, Fröscher W, Pisani F, Van Rijn CM (2002) The importance of drug interactions in epilepsy therapy. Epilepsia 43:365–385

    Article  PubMed  CAS  Google Scholar 

  • Perucca E (1995) Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl. 162:31–34

    PubMed  CAS  Google Scholar 

  • Pietrasiewicz T, Czechowska G, Dziki M, Turski WA, Kleinrok Z, Czuczwar SJ (1993) Competitive NMDA receptor antagonists enhance the antielectroshock activity of various antiepileptics. Eur J Pharmacol 250:1–7

    Article  PubMed  CAS  Google Scholar 

  • Pohl M, Mares P (1990) Effects of loreclezole on metrazol-induced phenomena in developing rats. Arch Int Pharmacodyn Ther 305:163–171

    PubMed  CAS  Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  PubMed  CAS  Google Scholar 

  • Rentmeester T, Hulsman J (1991) Efficacy and safety evaluation of loreclezole as add-on treatment in therapy-resistant epilepsy patients. Epilepsy Res 8:166–169

    Article  PubMed  CAS  Google Scholar 

  • Rentmeester T, Hulsman J (1992) Loreclezole monotherapy in patients with partial seizures. Epilepsy Res 11:141–145

    Article  PubMed  CAS  Google Scholar 

  • Rentmeester T, Janssen A, Hulsman J, Scholtes F, Van Der Kleij B, Overweg J, Meijer J, De Beukelaar F (1991a) A double-blind, placebo-controlled evaluation of the efficacy and safety of loreclezole as add-on therapy in patients with uncontrolled partial seizures. Epilepsy Res 9:59–64

    Article  PubMed  CAS  Google Scholar 

  • Rentmeester T, Janssen A, Hulsman J, Scholtes F, Van Der Kleij B, Overweg J, Meijer J, De Beukelaar F (1991b) Long-term evaluation of the efficacy and safety of loreclezole as add-on therapy in patients with uncontrolled partial seizures: a 1-year open follow-up. Epilepsy Res 9:65–70

    Article  PubMed  CAS  Google Scholar 

  • Reynolds EH, Shorvon SD (1981) Single drug or combination therapy for epilepsy? Drugs 21:374–382

    Article  PubMed  CAS  Google Scholar 

  • Rho JM, Donevan SD, Rogawski MA (1996) Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J Physiol 497(Pt 2):509–522

    PubMed  CAS  Google Scholar 

  • Roks G, Deckers CLP, Meinardi H, Egmond JV, Van Rijn CM (1999) Effect of polytherapy compared with monotherapy in antiepileptic drug: an animal study. J Pharmacol Exp Ther 288:472–477

    PubMed  CAS  Google Scholar 

  • Sanna E, Murgia A, Casula A, Usala M, Maciocco E, Tuligi G, Biggio G (1996) Direct activation of GABAA receptors by loreclezole, an anticonvulsant drug with selectivity for the beta-subunit. Neuropharmacology 35:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D (1996) Modern management of epilepsy: Rational polytherapy. Baillieres Clin Neurol 5:757–763

    PubMed  CAS  Google Scholar 

  • Stephen LJ, Brodie MJ (2002) Seizure freedom with more than one antiepileptic drug. Seizure 11:349–351

    Article  PubMed  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose-effect data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Tallarida RJ, Stone DJ, Raffa RB (1997) Efficient designs for studying synergistic drug combinations. Life Sci 61:PL417–PL425

    Article  CAS  Google Scholar 

  • Thomet U, Baur R, Dodd RH, Sigel E (2000) Loreclezole as a simple functional marker for homomeric rho type GABA(C) receptors. Eur J Pharmacol 408:R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Venault P, Chapouthier G, De Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepines impair and beta-carbolines enhance performance in learning and memory tasks. Nature 321:864–866

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Bain CJ, Quirk K, Mckernan RM, Wingrove PB, Whiting PJ, Kemp JA (1994) A novel allosteric modulatory site on the GABAA receptor beta subunit. Neuron 12:775–782

    Article  PubMed  CAS  Google Scholar 

  • Wingrove PB, Wafford KA, Bain C, Whiting PJ (1994) The modulatory action of loreclezole at the gamma-aminobutyric acid type A receptor is determined by a single amino acid in the beta 2 and beta 3 subunit. Proc Natl Acad Sci USA 91:4569–4573

    Article  PubMed  CAS  Google Scholar 

  • White HS, Woodhead JH, Wilcox KS, Stables JP, Kupferberg HJ, Wolf HH (2002) Discovery and preclinical development of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th ed. Lippincott Williams & Wilkins, Philadelphia, pp 36–48

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Medical University of Lublin. The authors are grateful for the generous gifts of valproate magnesium by ICN Polfa S.A. (Rzeszow, Poland) and carbamazepine by Polfa (Starogard, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J., Ratnaraj, N., Patsalos, P.N. et al. Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Naunyn Schmied Arch Pharmacol 373, 169–181 (2006). https://doi.org/10.1007/s00210-006-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0055-4

Keywords

Navigation