Skip to main content
Log in

The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine whether the metalloporphyrin, 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron (III) chloride (FeTPPS), antagonized the effect of peroxynitrite, oxygen-free radicals, and the combination of the two, on cardiomyocyte cell viability. We further sought to compare the effects of FeTPPS to an inhibitor of the mitochondrial transmembrane permeability transition pores (PTP)—cyclosporin A. Cardiomyocytes from embryonic chick heart were treated with 3-morpholinosydnonimine (SIN-1), which decomposes to liberate NO and superoxide anion (O2 ) which in turn generates peroxynitrite. FeTPPS antagonized cell death induced by either SIN-1 or H2O2. The combination of H2O2 plus SIN-1 further enhanced the amount of cell death over SIN-1 alone. FeTPPS rescued cells from almost complete cell death with the combination of SIN-1 plus H2O2. SIN-1 induced cardiac protein nitration, including mitochondrial proteins as demonstrated by Western blotting with nitrotyrosine-specific antibodies. FeTPPS reduced cellular protein nitration. SIN-1-induced loss of mitochondrial transmembrane permeability transition pores potential was visualized with fluorescent dye staining and was reversed by FeTPPS. In contrast, the mitochondrial PTP blocker cyclosporin A did not alter SIN-1-induced cell death. In summary, these data demonstrate the enhanced cellular lethality of the combination of peroxynitrite and reactive oxygen species from hydrogen peroxide. A mitochondrial death pathway was implicated as nitration of mitochondrial proteins was induced by peroxynitrite that also induced a loss of ΔΨm that was prevented by FeTPPS. In contrast, cyclosporin did not antagonize the effects of SIN-1. The ability of FeTPPS to reduce reactive nitrogen-induced cell death, and protein nitration suggests that FeTPPS is a useful agent to maintain cell viability and is better than cyclosporin in this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci (USA) 98:12056–12061

    Article  CAS  Google Scholar 

  • Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, Tang XL, Wang O, Cardwell E, Ping P (2002) Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon), facilitating PKCepsilon translocation via enhanced PKCepsilon-RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem 277:15021–15027

    Article  PubMed  CAS  Google Scholar 

  • Bartesaghi S, Ferrer-Sueta G, Peluffo G, Valez V, Zhang H, Kalyanaraman B, Radi R (2006) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32:501–515

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A—sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    Article  PubMed  Google Scholar 

  • Borbely A, Toth A, Edes I, Virag L, Papp JG, Varro A, Paulus WJ, van der Velden J, Stienen GJ, Papp Z (2005) Peroxynitrite-induced alpha-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc Res 67:225–233

    Article  PubMed  CAS  Google Scholar 

  • Borutaite V, Brown GC (2003) Nitric oxide induces apoptosis via hydrogen peroxide, but necrosis via energy and thiol depletion. Free Radical Biology Med 35:1457–1468

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Darley-Usmar VM (2004) Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am J Physiol (Heart Circ Physiol) 286:H39–H46

    Article  CAS  Google Scholar 

  • Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    Article  PubMed  CAS  Google Scholar 

  • Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA (2004) Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Archiv Biochem Biophys 421:99–107

    Article  CAS  Google Scholar 

  • Chaves AA, Mihm MJ, Schanbacher BL, Basuray A, Liu C, Ayers LW, Bauer JA (2003) Cardiomyopathy in a murine model of AIDS: evidence of reactive nitrogen species and corroboration in human HIV/AIDS cardiac tissues. Cardiovasc Res 60:108–118

    Article  PubMed  CAS  Google Scholar 

  • Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  • Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO release from sydnonimines. J Cardiovasc Pharm 14(Suppl 11):S13–S22

    CAS  Google Scholar 

  • Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    PubMed  CAS  Google Scholar 

  • Fernandez PA, Rotello RJ, Rangini Z, Doupe A, Drexler HC, Yuan J (1994) Expression of a specific marker of avian programmed cell death in both apoptosis and necrosis. Proc Natl Acad Sci (USA) 91:8641–8645

    Article  CAS  Google Scholar 

  • Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O (1998) Oxidative stress during myocardial ischaemia and heart failure. Europ Heart J 19(Suppl B):B2–B11

    CAS  Google Scholar 

  • Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  CAS  Google Scholar 

  • Ghafourifar P, Richter C (1999) Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH. Biol Chem 380:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  • Giulivi C (2003) Characterization and function of mitochondrial nitric-oxide synthase. Free Radical Biology Med 34:397–408

    Article  CAS  Google Scholar 

  • Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol 287:L262–L268

    Article  CAS  Google Scholar 

  • Grace AM, Perryman MB, Roberts R (1983) Purification and characterization of human mitochondrial creatine kinase. A single enzyme form. J Biol Chem 258:15346–15354

    PubMed  CAS  Google Scholar 

  • Guidarelli A, Fiorani M, Cantoni O (2004) Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. Biochemical J 378:959–966

    Article  CAS  Google Scholar 

  • Heigold S, Sers C, Bechtel W, Ivanovas B, Schafer R, Bauer G (2002) Nitric oxide mediates apoptosis induction selectively in transformed fibroblasts compared to nontransformed fibroblasts. Carcinogenesis 23:929–941

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nature Rev 6:150–166

    Article  CAS  Google Scholar 

  • Holm P, Kankaanranta H, Metsa-Ketela T, Moilanen E (1998) Radical releasing properties of nitric oxide donors GEA 3162, SIN-1 and S-nitroso-N-acetylpenicillamine. Europ J Pharm 346:97–102

    Article  CAS  Google Scholar 

  • Iwase H, Robin E, Guzy RD, Mungai PT, Vanden Hoek TL, Chandel NS, Levraut J, Schumacker PT (2007) Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes. Free Radical Biology Med 43:590–599

    Article  CAS  Google Scholar 

  • Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    Article  PubMed  CAS  Google Scholar 

  • Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci (USA) 95:11584–11589

    Article  CAS  Google Scholar 

  • Kanski J, Behring A, Pelling J, Schoneich C (2005) Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol (Heart Circ Physiol) 288:H371–H381

    Article  CAS  Google Scholar 

  • Kawano T, Kunz A, Abe T, Girouard H, Anrather J, Zhou P, Iadecola C (2007) iNOS-derived NO and nox2-derived superoxide confer tolerance to excitotoxic brain injury through peroxynitrite. J Cerebral Blood Flow Metabolism 27:1453–1462

    Article  CAS  Google Scholar 

  • Kim JY, Lee KH, Lee BK, Ro JY (2005) Peroxynitrite modulates release of inflammatory mediators from guinea pig lung mast cells activated by antigen–antibody reaction. International Archiv Allergy Immun 137:104–114

    Article  CAS  Google Scholar 

  • Kloner RA, Przyklenk K, Whittaker P (1989) Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circ 80:1115–1127

    CAS  Google Scholar 

  • Kong JY, Rabkin SW (2000) Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta 1485:45–55

    PubMed  CAS  Google Scholar 

  • Kong JY, Rabkin SW (2003) Mitochondrial effects with ceramide-induced cardiac apoptosis are different from those of palmitate. Archiv Biochem Biophys 412:196–206

    Article  CAS  Google Scholar 

  • Kong JY, Rabkin SW (2004) Reduction of palmitate-induced cardiac apoptosis by fenofibrate. Mol Cell Biochem 258:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kong JY, Klassen SS, Rabkin SW (2005) Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Mol Cell Biochem 278:39–51

    Article  PubMed  CAS  Google Scholar 

  • Kooy NW, Lewis SJ, Royall JA, Ye YZ, Kelly DR, Beckman JS (1997) Extensive tyrosine nitration in human myocardial inflammation: evidence for the presence of peroxynitrite. Critical Care Medicine 25:812–819

    Article  PubMed  CAS  Google Scholar 

  • Koppenol WH (1998) The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radical Biology & Med 25:385–391

    Article  CAS  Google Scholar 

  • Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, Chopin C, Neviere R (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358

    Article  PubMed  CAS  Google Scholar 

  • Levrand S, Vannay-Bouchiche C, Pesse B, Pacher P, Feihl F, Waeber B, Liaudet L (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radical Biology & Med 41:886–895

    Article  CAS  Google Scholar 

  • Lin KT, Xue JY, Sun FF, Wong PY (1997) Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells. Biochem Biophys Res Comm 230:115–119

    Article  PubMed  CAS  Google Scholar 

  • Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circ 111:988–995

    Article  CAS  Google Scholar 

  • Misko TP, Highkin MK, Veenhuizen AW, Manning PT, Stern MK, Currie MG, Salvemini D (1998) Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 273:15646–15653

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223–37230

    Article  PubMed  CAS  Google Scholar 

  • Nagano T (1999) Practical methods for detection of nitric oxide. Luminescence 14:283–290

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Antolin J, Redondo-Horcajo M, Zaragoza C, Alvarez-Barrientos A, Fernandez AP, Leon-Gomez E, Rodrigo J, Lamas S (2007) Role of peroxynitrite in endothelial damage mediated by Cyclosporine A. Free Radical Biology Med 42:394–403

    Article  CAS  Google Scholar 

  • Onody A, Csonka C, Giricz Z, Ferdinandy P (2003) Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Res 58:663–670

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    PubMed  CAS  Google Scholar 

  • Pryor WA, Lemercier JN, Zhang H, Uppu RM, Squadrito GL (1997) The catalytic role of carbon dioxide in the decomposition of peroxynitrite. [erratum appears in Free Radic Biol Med 1998;24:508]. Free Radical Biol Med 23:331–338

    Article  CAS  Google Scholar 

  • Rabkin SW (1994) Effect of hypoxia on choline metabolism and phosphatidylcholine biosynthesis in isolated adult rat ventricular myocytes: effects of trifluoperazine. Biochem Cell Biol 72:289–296

    Article  PubMed  CAS  Google Scholar 

  • Rabkin SW, Klassen SS (2008) Metalloporphyrins as a therapeutic drug class against peroxynitrite in cardiovascular diseases involving ischemic reperfusion injury. Europ J Pharm 586:1–8

    Article  CAS  Google Scholar 

  • Rabkin SW, Kong JY (2000) Nitroprusside induces cardiomyocyte death: interaction with hydrogen peroxide. Am J Physiol (Heart Circ Physiol) 279:H3089–H3100

    CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Archiv Biochem Biophys 288:481–487

    Article  CAS  Google Scholar 

  • Ragan CI (1976) The structure and subunit composition of the particulate NADH-ubiquinone reductase of bovine heart mitochondria. Biochem J 154:295–305

    PubMed  CAS  Google Scholar 

  • Redondo-Horcajo M, Lamas S (2005) Oxidative and nitrosative stress in kidney disease: a case for cyclosporine A. J Nephrol 18:453–457

    PubMed  CAS  Google Scholar 

  • Ronson RS, Nakamura M, Vinten-Johansen J (1999) The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 44:47–59

    Article  PubMed  CAS  Google Scholar 

  • Schluter KD, Weber M, Schraven E, Piper HM (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267:H1461–H1466

    PubMed  CAS  Google Scholar 

  • Shao B, Bergt C, Fu X, Green P, Voss JC, Oda MN, Oram JF, Heinecke JW (2005) Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J Biol Chem 280:5983–5993

    Article  PubMed  CAS  Google Scholar 

  • Shimanovich R, Groves JT (2001) Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch Biochem Biophys 387:307–317

    Article  PubMed  CAS  Google Scholar 

  • Singh RJ, Hogg N, Joseph J, Konorev E, Kalyanaraman B (1999) The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors. Arch Biochem Biophys 361:331–339

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Tatum FM, Muster P, Burch MK, Morgan WT (1988) Importance of ligand-induced conformational changes in hemopexin for receptor-mediated heme transport. J Biol Chem 263:5224–5229

    PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci (USA) 89:444–448

    Article  CAS  Google Scholar 

  • Steinmann M, Moosmann N, Schimmel M, Gerhardus C, Bauer G (2004) Differential role of extra- and intracellular superoxide anions for nitric oxide-mediated apoptosis induction. In Vivo 18:293–309

    PubMed  CAS  Google Scholar 

  • Szabo G, Bahrle S (2005) Role of nitrosative stress and poly(ADP-ribose) polymerase activation in myocardial reperfusion injury. Current Vasc Pharm 3:215–220

    Article  CAS  Google Scholar 

  • Szabo C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT (2002) Part I: Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:71–580

    Google Scholar 

  • Tan KH, Harrington S, Purcell WM, Hurst RD (2004) Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res 29:579–587

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Jiao X, Gao E, Lau WB, Yuan Y, Lopez B, Christopher T, RamachandraRao SP, Williams W, Southan G, Sharma K, Koch W, Ma XL (2006) Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circ 114:1395–1402

    Article  CAS  Google Scholar 

  • Trackey JL, Uliasz TF, Hewett SJ (2001) SIN-1-induced cytotoxicity in mixed cortical cell culture: peroxynitrite-dependent and -independent induction of excitotoxic cell death. J Neurochem 79:445–455

    Article  PubMed  CAS  Google Scholar 

  • Tsang MY, Cowie SE, Rabkin SW (2004) Palmitate increases nitric oxide synthase activity that is involved in palmitate-induced cell death in cardiomyocytes. Nitric Oxide 10:11–19

    Article  PubMed  CAS  Google Scholar 

  • Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharm Rev 54:619–634

    Article  PubMed  CAS  Google Scholar 

  • Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977

    Article  PubMed  CAS  Google Scholar 

  • Uppu RM, Nossaman BD, Greco AJ, Fokin A, Murthy SN, Fonseca VA, Kadowitz PJ (2007) Cardiovascular effects of peroxynitrite. Clin Exp Pharm & Physiol 34:933–937

    Article  CAS  Google Scholar 

  • van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE (1999) Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Resp Critical Care Med 160:1–9

    Google Scholar 

  • Van der Vliet A, Smith D, O’Neill CA, Kaur H, Darley-Usmar V, Cross CE, Halliwell B (1994) Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303:295–301

    PubMed  Google Scholar 

  • Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radical Biol Med 43:995–1022

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Rabkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klassen, S.S., Rabkin, S.W. The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death. Naunyn-Schmied Arch Pharmacol 379, 149–161 (2009). https://doi.org/10.1007/s00210-008-0342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0342-3

Keywords

Navigation