Skip to main content

Advertisement

Log in

Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We applied the fragment molecular orbital (FMO) method, which enables total electronic calculations of large molecules at ab initio level, to the evaluation of binding affinities between the human progesterone receptor ligand-binding domain (PR LBD) and various steroidal ligands. The FMO calculations were performed on the entire structure of the PR LBD, which is composed of ∼4,100 atoms. Our computational binding energies of PR LBD/ligand complexes agreed well with experimental binding affinities (r = 0.909). Interaction energies between each ligand and specific amino acid residues were also obtained from the FMO calculations. The principal residues involved in the interactions with these ligands were Arg766 and Asn719, with some additional contribution by Gln725. The main factor determining differences in binding affinity of the various ligands was not interactions with particular residues, but with the binding-site residues closest to the ligand. The interfragment interaction energy analysis is proving to be a useful method for gaining detailed information on ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bergink EW, van Meel F, Turpijn EW, van der Vies J (1983) Binding of progestagens to receptor proteins in MCF-7 cells. J Steroid Biochem 19:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105

    Article  PubMed  CAS  Google Scholar 

  • Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, Ohman L, Greene GL, Gustafsson JÅ, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  PubMed  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1998) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  Google Scholar 

  • Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. J Phys Chem A 111:2722–2732

    Article  PubMed  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA,Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nkai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C,Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Forcsman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh

    Google Scholar 

  • Fukuzawa K, Kitaura K, Uebayasi M, Nakata K, Kaminuma T, Nakano T (2005) Ab initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: an application of fragment molecular orbital method. J Comp Chem 26:1–10

    Article  CAS  Google Scholar 

  • Gantchev TG, Ali H, van Lier JE (1994) Quantitative structure–activity relationships/comparative molecular field analysis (QSAR/CoMFA) for receptor-binding properties of halogenated estradiol derivatives. J Med Chem 37:4164–4176

    Article  PubMed  CAS  Google Scholar 

  • Grill HJ, Manz B, Elger W, Pollow K (1985) 3H-cyproterone acetate: binding characteristics to human uterine progestagen receptors. J Endocrinol Investig 8:135–141

    CAS  Google Scholar 

  • Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH···O interaction: is it a true hydrogen bond? J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  • Hammond GL, Rabe T, Wagner JD (2001) Preclinical profiles of progestins used in formulations of oral contraceptives and hormone replacement therapy. Am J Obstet Gynecol 185:S24–S31

    Article  PubMed  CAS  Google Scholar 

  • Insight II (1998) Molecular Simulations Inc, San Diego, CA

  • Jiang L, Lai L (2002) CH···O Hydrogen bonds at protein–protein interfaces. J Biol Chem 277:37732–37740

    Article  PubMed  CAS  Google Scholar 

  • Kauppi B, Jakob C, Färnegårdh M, Yang J, Ahola H, Alarcon M, Calles K, Engström O, Harlan J, Muchmore S, Ramqvist A-K, Thorell S, Öhman L, Greer J, Gustafsson J-Å, Carlstedt-Duke J, Carlquist M (2003) The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 278:22748–22754

    Article  PubMed  CAS  Google Scholar 

  • Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999a) Fragment molecular orbital method: an approximate computational method for large molecule. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  • Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999b) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  • Kitaura K, Sugiki S, Nakano T, Komeiji Y, Uebayasi M (2001) Fragment molecular orbital method: analytical energy gradients. Chem Phys Lett 336:163–170

    Article  CAS  Google Scholar 

  • Klaholz BP, Moras D (2002) C-H···O hydrogen bonds in the nuclear receptor RARγ—a potential tool for drug selectivity. Structure 10:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Komeiji Y, Ishida T, Fedorov DG, Kitaura K (2007) Change in a protein's electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin. J Comp Chem 28:1750–1762

    Article  CAS  Google Scholar 

  • Le Questel J-Y, Boquet G, Berthelot M, Laurence C (2000) Hydrogen bonding of progesterone: a combined theoretical, spectroscopic, thermodynamic, and crystallographic database study. J Phys Chem B 104:11816–11823

    Article  Google Scholar 

  • Letz M, Bringmann P, Mann M, Mueller-Fahrnow A, Reipert D, Scholz P, Wurtz J-M, Egner U (1999) Investigation of the binding interactions of progesterone using muteins of the human progesterone receptor ligand binding domain designed on the basis of a three-dimensional protein model. Biochim Biophys Acta 1429:391–400

    PubMed  CAS  Google Scholar 

  • Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, Bäsler S, Schäfer M, Egner U, Carrondo MA (2000) Structural evidence for ligand specificity in the binding domain of the human androgen receptor: implications for pathogenic gene mutations. J Biol Chem 275:26164–26171

    Article  PubMed  CAS  Google Scholar 

  • Mordasini T, Curioni A, Bursi R, Andreoni W (2003) The binding mode of progesterone to its receptor deduced from molecular dynamics simulations. ChemBioChem 4:155–161

    Article  PubMed  CAS  Google Scholar 

  • Morizono D, Yamagishi K, Shimizu M, Nomura K, Iwashita T, Tokiwa H, DeLuca H F, Yamada S (2007) 19F NMR Study of Fluorovitamin D Compounds Complexed with Vitamin D Receptor: Probing the Conformation of Vitamin D Ligands Accommodated in the Receptor. Cell Chem & Bio (submitted)

  • Nakanishi I, Fedorov DG, Kitaura K (2007) Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Proteins: Structure, Functions, and Bioinformatics 68:145–158

    Article  CAS  Google Scholar 

  • Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618

    Article  CAS  Google Scholar 

  • Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  • Oostenbrink BC, Pitera JW, van Lipzig MMH, Meerman JHN, van Gunsteren WF (2001) Simulations of the estrogen receptor ligand-binding domain: affinity of natural ligands and xenoestrogens. J Med Chem 43:4594–4605 (Published erratum appears in J. Med. Chem. 2001, 44, 1124.)

    Article  Google Scholar 

  • Pasqualini JR, Paris J, Sitruk-Ware R, Chetrite G, Botella J (1998) Progestins and breast cancer. J Steroid Biochem Mol Biol 65:225–235

    Article  PubMed  CAS  Google Scholar 

  • Renaud JP, Moras D (2000) Structural studies on nuclear receptors. Cell Mol Life Sci 57:1748–1769

    Article  PubMed  CAS  Google Scholar 

  • Sadler BR, Cho SJ, Ishaq KS, Chae K, Korach KS (1998) Three-dimensional quantitative structure–activity relationship study of nonsteroidal estrogen receptor ligands using the comparative molecular field analysis/cross-validated r2-guided region selection approach. J Med Chem 41:2261–2267

    Article  PubMed  CAS  Google Scholar 

  • Scheiner S, Kar T, Gu Y (2001) Strength of the CαH··O hydrogen bond of amino acid residues. J Biol Chem 276:9832–9837

    Article  PubMed  CAS  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz ACU, Renaud JP, Moras D (2001) Binding of ligands and activation of transcription by nuclear receptors. Annu Rev Biophys Biomol Struct 30:329–359

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptors’ ligand binding domains. Proc Natl Acad Sci U S A 95:5998–6003

    Article  PubMed  CAS  Google Scholar 

  • Tong W, Perkins R, Xing L, Welsh WJ, Sheehan DM (1997) QSAR Models for binding of estrogenic compounds to estrogen receptor α and β subtypes. Endocrinology 138:4022–4025

    Article  PubMed  CAS  Google Scholar 

  • Waller CL, Juma BW, Gray LE Jr, Kelce WR (1996) Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol Appl Pharmacol 137:219–227

    Article  PubMed  CAS  Google Scholar 

  • Williams SP, Sigler PB (1998) Atomic structure of progesterone complexed with its receptor. Nature 393:392–396

    Article  PubMed  CAS  Google Scholar 

  • Wurtz J-M, Egner U, Heinrich N, Moras D, Mueller-Fahrnow A (1998) Three-dimensional models of estrogen receptor ligand binding domain complexes, based on related crystal structures and mutational and structure–activity relationship data. J Med Chem 41:1803–1814

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi K, Yamamoto K, Yamada S, Tokiwa H (2006) Function of key residues in the ligand-binding pocket of vitamin D receptor: fragment molecular orbital–interfragment interaction energy analysis. Chem Phys Lett 420:465–468

    Article  CAS  Google Scholar 

  • Yamagishi K, Yamamoto K, Mochizuki Y, Nakano T, Yamada S, Tokiwa H (2007) Flexible ligand recognition of peroxisome proliferators-activated receptor-γ(PPAR-γ). Bioch Biophys Res Comm: submitted

  • Yamamoto K, Abe D, Yoshimoto N, Choi M, Yamagishi K, Tokiwa H, Shimizu M, Makishima M, Yamada S (2006) Vitamin D receptor: ligand recognition and allosteric network. J Med Chem 46:1313–1324

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Shizuo Yamada (University of Shizuoka) for his kind encouragement. The work reported here was supported primarily by Frontier Project “Adaptation and Evolution of Extremophile” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was also partially supported by the “Revolutionary Simulation Software for 21st Century” (RSS21) project operated by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and the CREST project operated by the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tokiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, T., Yamagishi, K., Nakano, T. et al. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain. Naunyn-Schmied Arch Pharmacol 377, 607–615 (2008). https://doi.org/10.1007/s00210-008-0268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0268-9

Keywords

Navigation